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A brief description of the basic features of the Mathematica package ‘Riemannian
Geometry and Tensor Calculus’ (RGTC) is given. Two examples, illustrating the

use of the functions defined in the package in non-trivial calculations, are presented.

1. Introduction

RGTC developed out of the author’s attempts to use Mathematica for ex-
plicit tensor computations in General Relativity. One would think that
there would be several packages available for this purpose. Surprisingly,
this is not the case: apart from GRTensorMa, other packages are either in-
tended for symbolic manipulation of tensor expressions (Ricci, EinS, TTC),
or do not run under Mathematica (GRTensorII, Sheep, Redten), or are not
free (MathTensor, Cartan). MathTensor, in particular, is essentially a new
progamming language — it has over 250 new commands with rather unin-
tuitive notation.

The basic idea of RGTC is to provide definitions for the most common
Riemannian Geometry tensors and tensor operations, so that the user can
carry out calculations on tensors using these functions along with any other
applicable Mathematica function. The package is, therefore, most useful to
those who already have some experience with symbolic manipulations in
Mathematica. In the following we will assume that this is the case.

aThis is a less developed version, written for Mathematica 2.0, of the package GRTensorII
that runs under Maple.
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2. Representation and Naming of Tensors

The requirement that Mathematica functions like Collect, Factor, Coef-
ficient, Replace, Solve, etc., should be able to act, without modification,
on the tensors computed by RGTC dictated the form of the internal repre-
sentation used for tensors — nested lists. Thus an nth-rank tensor is stored
as an n-fold nested list of its componentsb. This representation implies that
different forms of the same tensor (e.g., Rabcd, Ra

bcd, etc.) must be stored
as different nested lists. This is not unexpected if one remembers that the
emphasis here is on computing explicit expressions of tensor components
in a particular frame, rather than symbolically manipulating the indices of
tensor expressions.

One drawback of the nested list representation is that it is redundant:
tensors with symmetries have the same components stored in more than
one place in the list, while operations on such tensors perform identical cal-
culations more than once. This drawback, resulting in slower performance
and higher memory requirements, is not very important with modern desk-
top computersc. And, we believe, it is overshadowed by the advantage of
allowing the user to manipulate these lists directly.

To be able to access nested lists representing tensors one must give
them names. Although any name will do the job, it helps to have a naming
convention for tensors that meets the following criteria

• it contains information on the number and kind (co- or conta-
variant) of indices

• it resembles the traditional notation for tensors
• it is reasonably short and easy to type

A naming convention that meets these criteria is to use, as part of the
name, the letters ‘U’ (=Up) and ‘d’ (=down) to denote each free tensor
index. Thus, for example, the nested lists representing gab, gab, Rabcd,
Ra

bcd, Rab are stored under the names gdd, gUU, Rdddd, RUddd, Rdd,
respectively. Contractions can be denoted by replacing the contracted in-
dices by the same letter (Upper and lower case) while the symbol ‘$’ can
be used to separate different tensors. For example, the Ricci tensor could
also be named RAdad or, more awkwardly, gAC$Radcd, these names indicat-
ing, in addition, which indices of the Riemann tensor have been contracted.

bThis representation for tensors is also suggested in the Mathematica Book, Sec. 3.7.11.
cOur definition of ‘modern’ is quite modest: any computer running at 500 Mhz and
allowing 30 MB of RAM to the kernel will perform adequately for most problems.
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Finally, covariant differentiations can be denoted by preceding the differen-
tiation index with the letter ‘j’ (resembling ‘;’). For example, RAdddja and
Rddjd are appropriate names for the 3rd rank covariant tensors Ra

bcd;a and
Rab;c, respectively. Note that this convention requires that the letters ‘U’
and ‘d’ be used exclusively for free indices.

The tensors calculated by RGTC are stored under names conforming
to this convention. Of course, the user can devise his own convention for
naming nested lists representing tensors. One must remember, however,
that these are just names for accessing nested lists; the functions which
operate on these lists cannot distinguish co- from contra-variant indices
from their names!

Specific tensor components can be accessed by taking the appropriate
‘part’ of the relevant list. For example, Rdddd[[2,3,2,4]] is the com-
ponent R2324 while RUddd[[2,3,2,4]] gives R2

324. One can also take
subparts: RUddd[[2,4]] is the rank-2 tensor with components R2

4ab.

3. New functions defined by RGTC

RGTC introduces a minimum of new functions. To begin calculations one
must first specify a geometry. This is done byd:

(1) defining a list of symbols for the coordinates, e.g.,

xIN = {t, r, th, phi},

(2) defining a nested list of functions of the coordinates — the metric
tensor, e.g.,

gIN = {{1-2M/r,0,0,0},{0,-r/(r-2M),0,0},

{0,0,-r^2,0},{0,0,0,-r^2 Sin[th]^2}},

(3) (optional) assigning a list of simplification rules to the global vari-
able simpRules, e.g.,

simpRules = {y_. Sin[x_]^2 + y_. Cos[x_]^2 -> y}

One then evaluates the main routine of RGTC, RGtensors, with gIN and
xIN as arguments:

RGtensors[gIN, xIN]

dAlthough we will give examples in 4 dimensions, the functions in RGTC work in any
dimension.
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When RGtensors is finished, the following tensors (= nested lists of com-
ponents in the default coordinate frame) have been calculated and stored
under the names in parentheses:

(i) metric (gdd, gUU)
(ii) Christoffel symbols of the 2nd kind (GUdd)
(iii) Riemann (Rdddd, RUddd)
(iv) Ricci, Ricci Scalar, Einstein (Rdd, R, EUd)
(v) Weyl (Wdddd)

RGtensors prints messages after each tensor is computed. It also tests if
the specified metric is Flat, Ricci Flat, Conformally Flat, Einstein Space or
Space of Constant Curvature and, if yes, prints appropriate messages.

The simplification rules defined in simpRules are used repeatedly by
RGtensors to simplify expressions, and the components of all tensors are
stored in factored form. Although this slows down RGtensors consider-
ably, it ensures that all cancellations have been performed.

If one wishes to do calculations in a frame other than the coordinate
frame, one must specify this (co-)frame as a list of 1-formse in the coordinate
differentials, say,

eIN = {Sqrt[1-2M/r]d[t], d[r]/Sqrt[1-2M/r],

r d[th], r Sin[th]d[phi]},

and evaluate RGtensors with eIN as a third argument:

RGtensors[gINon, xIN, eIN]

Of course now the metric, gINon, must be given with respect to the frame
eIN, gINon = {{1,0,0,0},{0,-1,0,0},{0,0,-1,0},{0,0,0,-1}}, and
the components of all tensors (Rdddd, EUd, etc.) are calculated with re-
spect to this frame. Also GUdd now stores the appropriate connection coef-
ficients for the specified metric and frame.

RGTC can also be used to do approximate calculations (perturbations
of a given metric, asymptotic expansions). For approximate calculations
all one has to do is give the metric and/or the frame as a series expansion,
to the required order, using the Mathematica function Seriesf .

eFor calculations with differential forms RGTC uses the author’s package EDC, which

is available at www.inp.demokritos.gr/˜ sbonano/EDC/.
fAfter taking precautions to ensure that Series will not expand the coordinate differen-
tial d[r], if r is the expansion parameter!
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Finally, when gIN equals {{0,1,0,0}, {1,0,0,0}, {0,0,0,-1},
{0,0,-1,0}}, RGtensors assumes that the frame given in eIN is
the Newman-Penrose null frame {l, n,m, m̄}, and defines the functions
PH[i,j], PS[i], Λ giving the NP quantities Φij ,Ψi,Λ in this frame.

After the basic Riemannian Geometry tensors have been defined by
RGtensors, the following functions can be used to do further calculations:

• Raise, Lower. As their names imply, these functions compute the
components of tensors in different index configurations. They take
as arguments a tensor and the position(s) of the indices to be moved
(Up or down). For example, evaluating the commands WUUdd

= Raise[Wdddd,1,2]; and Edd = Lower[EUd,1]; computes the
tensors with components W ab

cd and Eab, respectively.
• The built-in Mathematica functions Outer and Transpose can

be used to define new tensors. For example, the commands
ggdddd = Outer[Times, gdd, gdd]; and gxgdddd = ggdddd -

Transpose[ggdddd, {1,3,2,4}]; define 4th rank covariant ten-
sors whose [[a, b, c, d]] components are gabgcd and gabgcd−gacgbd,
respectively.

• Contract, multiDot. These functions are used for contractions.
Contract takes as arguments a tensor and one or more lists of
two numbers indicating the positions of the indices to be con-
tracted, while multiDot takes two tensors and a similar list of
indices. For example, Contract[RUddd, {1,3}]; will contract the
first index with the third giving the Ricci tensor, while W2UUdd =

multiDot[WUUdd, WUUdd, {3,1}, {4,2}]; contracts the 3rd and
4th indices of the first tensor with the 1st and 2nd indices of the
second tensor, giving the square of the Weyl tensor W ab

mnWmn
cd.

In both Contract and multiDot, one must be careful that
each pair of numbers {i,j} refers to one ‘U’ and one ‘d’ index (in
either order). Otherwise, meaningless results will be obtained.

• covD, covDiv, Bianchi. covD takes as arguments an nth-rank
tensor and a list of numbers (the positions of its contravariant in-
dices) and returns a tensor of rank n+1 — the covariant derivative
of the tensor. The last index is the differentiation index. For ex-
ample, Rddjd = covD[Rdd] has components Rab;c, while WUUddjd

= covD[WUUdd,{1,2}]; is the tensor with components W ab
cd;e.

covDiv calculates the covariant divergence of a tensor with respect
to a contravariant index. If there are more than one contravariant
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indices, the index to be contracted is placed in an extra set of
curly brackets {}. Examples: covDiv[RUddd, {1}]; is the tensor
with components Ra

bcd;a, while covDiv[WUUdd,{1,{2}}]; is the
3rd-rank tensor with components W ab

cd;b.
Using covD and covDiv the function Bianchi[n] calculates the
full (n = 0), contracted once (n = 1) and contracted twice (n = 2)
Bianchi Identities (tensors of rank 5, 3, 1 respectively) and returns
a list of any non-vanishing terms. This is normally the empty list.

• eta[], HStar. eta[i ] is a function that generates the totally an-
tisymmetric tensor η with contravariant indices at the positions
specified by i. Thus, in four dimensions, eta[] is the totally co-
variant tensor ηabcd, eta[1] is the tensor ηa

bcd, and eta[3,4] the
tensor ηab

cd. HStar[x] is a function that computes the Hodge-dual
of x. It requires that a coframe basis has been given in RGtensors.

New tensors can be defined either by operations on other tensors, as in
the above examples, or by explicitly giving a list of their components as
functions of the coordinates.

In addition, the following auxiliary functions are used:

• FacSimp. FacSimp[x] applies the simplification rules defined in
the list simpRules and factors every component of the tensor x.
The tensors computed by RGtensors, as well as those returned
by the functions Raise, Lower, Contract, multiDot, covD,
covDiv, Bianchi have all been simplified using FacSimp.

• FuncRepRules (“Function Replacement Rules”).
FuncRepRules[f[x ], g , n ] generates a list of replacement
rules for replacing f [x] with g and the derivatives of f [x] (up
to order n) with the corresponding derivatives of g, where g is
any expression. The last argument, n, is optional; if it is omit-
ted, rules up to second order are generated. f can have any
number of arguments. Thus, while Rdd/.f[u,v] → P[u]*Q[v]

only replaces f [u, v] but leaves the derivatives of f [u, v] unchanged,
the command Rdd/.FuncRepRules[f[u,v], P[u]*Q[v]] replaces
both f [u, v] and its derivatives up to 2nd order.

• zeroQ, nonZeroN, nonZeroL, indepTerms. These functions
are useful in examining tensors.
zeroQ[x] tests if x is the zero tensor and returns True or False.
nonZeroN[x] returns the Number of non-zero components of the
tensor x.
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nonZeroL[x] returns a List of the distinct non-zero components
of the tensor x (if Z is any expression, Z, −Z, 2Z are considered
distinct).
indepTerms[x] returns a list of the ‘independent’ components of
the tensor x. Independent here means not equal to ± a numerical
multiple of another component.

Finally, RGTC uses the following global variables:
simpRules — a list of simplification rules.
TrigRules — a predefined list of simplification rules for handling fac-

tors of sin2 θ in the metric.
Dim — an integer = dimension of space.
coordList — a list of the coordinate names.
deList, dxRuleList — these lists are required for implicit frame cal-

culations — see Sec. 5.

4. Sample calculations: Going beyond the Ricci tensor

The package RGTC contains numerous examples indicating the use of the
functions defined above. Here we will give the commands necessary for two
more complicated calculations.

4.1. Bach and Bell-Robinson Tensors

The first example computes the Bach (= Wa
r
b
s
;s;r + 1

2Wa
r
b
sRrs) and

Bell-Robinson (= 1
4 (Wa

r
b
sWcrds + ∗Wa

r
b
s ∗ Wcrds), where ∗Wabcd =

1
2ηab

rsWrscd) tensors for a metric conformal to Schwarzschild with M=M[t]
and cosmological constant, and verifies some of their properties.

xIN = {t, r, th, phi}; g00 = 1 - 2 M[t]/r -Lambda r^2/3;

gIN = Omega[t,r]^2 DiagonalMatrix[{g00, -1/g00,

-r^2, -r^2 Sin[th]^2}];

simpRules = TrigRules;

RGtensors[gIN, xIN]

WdUdU = Raise[Wdddd,2,4];

WdUdSjs = covDiv[WdUdU,{2,{4}}];

BachTdd = FacSimp[covDiv[WdUdSjs,{2}] +

multiDot[WdUdU, Rdd, {2,1},{4,2}]/2];

(*Bach Tensor vanishes when conformal to Einstein space*)

zeroQ[FacSimp[BachTdd/.FuncRepRules[M[t],M0,4]]]
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starWdddd = multiDot[eta[3,4], Wdddd/2, {3,1},{4,2}];

starWdUdU = Raise[starWdddd,2,4];

BRTdddd = FacSimp[multiDot[WdUdU, Wdddd, {2,2},{4,4}]/4 +

multiDot[starWdUdU, starWdddd, {2,2},{4,4}]/4];

(*check symmetric*)

zeroQ[BRTdddd-Transpose[BRTdddd,{1,3,2,4}]]

BRTUUdd = Raise[BRTdddd,1,2];

(*check traceless*)

zeroQ[Contract[BRTUUdd,{1,3}]]

(*Bell-Robinson Tensor divergenceless if Einstein space*)

BRTUSddjs = covDiv[BRTUUdd,{1,{2}}];

zeroQ[BRTUSddjs/.Join[FuncRepRules[Omega[t,r],1],

FuncRepRules[M[t],M0,4]]]

4.2. Asymptotic behavior of the Bondi metric near null

infinity.

First define the coordinates, metric and null frame:

xIN = {u, r, th, phi};

gNPnull = {{0,1,0,0},{1,0,0,0},{0,0,0,-1},{0,0,-1,0}};

m3 = r Exp[gamma[u,r,th]](d[th]-U[u,r,th]d[u]);

m4 = r Exp[-gamma[u,r,th]]Sin[th]d[phi];

nullFrame ={d[u], Exp[2*beta[u,r,th]](d[r]+V[u,r,th]/2 d[u]),

(m3 + I m4)/Sqrt[2], (m3 - I m4)/Sqrt[2]};

simpRules = TrigRules;

One can now, EITHER compute first the exact expressions for all tensors,
and then substitute in Rdd series expansions for the unknown functions
using FuncRepRules:

RGtensors[gNPnull, xIN, nullFrame]

gammaSer = FuncRepRules[gamma[u,r,th], Series[c1[u,th]/r +

c2[u,th]/r^2 + c3[u,th]/r^3, {r,Infinity,3}]];

(*and similarly for the other functions --- beta, U, V*)

serRdd = FacSimp[Rdd/.Join[gammaSer,betaSer,...]];

OR, one can expand the unknown functions in the null frame before calling
RGtensors, in which case all tensors will be computed as series expan-
sionsg

gAssuming betaSer, etc., have been defined; see also footnote f.
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serFrame = FacSimp[nullFrame/.Join[gammaSer,betaSer,...]];

RGtensors[gNPnull, xIN, serFrame]

Both calculations result in the Ricci tensor being expressed in the form of
a series in inverse powers of r. One can then proceed to determine the
solution by equating to zero different terms in the expansion.

5. Implicit Frame Calculations

For some problems, giving the explicit expressions for the coframe is not
the most efficient way of doing the calculations. Suppose one wants to do
calculations in a Bianchi-Type IX cosmological model. Referred to an ap-
propriate frame, the metric is a function of the time coordinate only. If the
frame is written explicitly in terms of the differentials of the coordinates,
however, it has a rather complicated form which will cause RGtensors to
proceed very slowly. Yet, the exterior derivatives of the frame vectors are
simple expressions not involving the coordinates. In such cases one can leave
the frame undefined — in the form {e[1], e[2], e[3], e[4]} — and de-
fine two global variables: deList to contain the exterior derivatives of the
frame, say {e[2] ∧ e[3], e[3] ∧ e[1], e[1] ∧ e[2], 0} and dxRuleList to give
rules for replacing the differentials of any coordinates appearing in the met-
ric (or in deList) in terms of the e[i] basis, dxRuleList={d[t]→e[4]}.
In such cases RGtensors is called with an implicit frame {e[ ]} as third
argument,

xIN = {x1, x2, x3, t};
gIN = DiagonalMatrix[{-A[t], -B[t], -C[t], T[t]}];
deList = {e[2] ∧ e[3], e[3] ∧ e[1], e[1] ∧ e[2], 0};
dxRuleList = {d[t]→e[4]};
RGtensors[gIN, xIN, {e[ ]}]

and the calculations proceed much faster.

More detailed instructions are included in the package. To make best
use of RGTC, the user must be familiar with the basics of Mathematica,
especially operations with lists and the use of patterns and replacement
rules. RGTC requires Mathematica v3.0 or higher. It is available for free
at http//:www.inp.demokritos.gr/˜ sbonano/ RGTC/. Mathematica note-
books containing the full calculations outlined in Secs. 4.1, 4.2 can also be
found there.


