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Extension of Poincaré Algebra
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One of the main requirements imposed on quantum field theory is invariance
of the theory to the Poincare group [1]. However, only a fraction of the inter-
actions satisfying this requirement is realized in nature. It is possible that
these interactions, unlike others, have a higher degree of symmetry. It is
therefore of interest to study different algebras and groups, the invariance
with respect to which imposes limitations on the form of the elementary parti-
cle interaction. 1In the present paper we propose, in constructing the Hamil-
tonian fimulation of the quantum field theory, to_use as the basis a special
algebra ch is an extension of the algebra I of the Poincare group gen-
erators. The purpose of the paper is to find such a realization of the algebra
R, in which the Hamiltonian operator describes the interaction of quantized
fields

The extension of the algebra 7 is carried out in the !‘olluwing manner:
we add to the generators P, and M, the bispiror generators W, and Wg, which
we shall cail the genorators of spinor translations. In ordes to obtaln the
algebra &, it is necessary to find the Lorentz-invariant form of the permuta-
tion !‘elatioﬂu between the translation generators. In order not to violate
subsequently the connection between the spin and statistics, we shall consider
anticommtators of the operators W, and Wo. A generalization of the Jacobi

identities imposes stringent limitations on the form of the possible commuta-
tion relations between the algebra operators. We confine ourselves to con-
sideration of only those algebras £ , in which there are no subalgebras Q such
that # < Q and J° # Q. This cholce is governed by the fact that the remain-
ing algebras R are obtained by further extending the algebras <, and the
field theories corresponding to them will have a still higher degree of sym-
metry.

An investigation of the albegras J& has shown that upon spatial inversion
they do not go over into themselves for any choice of the structure constants
of the algebra. As a result, in a field theory that is invariant agalnst such
an algebra, the parity should not be conserved!), and the form of the noncon—
servation is completely determined by the algebva itself. We shall stop to
discuss one of the algebras X :

Wy Mol = 10 oMs = BaMy = M, g= 3,0 Ma)i (B BRI =05
(1a)

Wby PAL = i3, =8B (M WLe B nlws F=wy.

e

W, W, - yPs W, W, =0 [P, Wl =0, (1)
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Extension of Poincaré Algebra

We add to the generators P, and M,,, the new generators L)i2s
symmetric over Lorentz indices Ay...\s and s=0,1,2,..
The extension of the Poincaré algebra L (P) is:

[P*, P"] =0,
(M1, P = i(™ P = PY),
(M M/\p] = i(nh* MY — nuA MYP 4+ nw\ MHP — VP M;M)7

[PH, Lat] =0,
[M“V, Lé\l...)\s] _ i(n)\lngkg...)\s o+ _n)\s,uLél..)\sflu)’

(Lo, LN = i LN (5 =0,1,2, ).

The generators L{l\l""\s carry internal charges a and high spins.
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Extension of Poincaré Algebra

The algebra L (P) is gauge invariant:

Lé\l"')\s —>L21"')‘5—|—

+ Z PAMAzAs Z phaprepseds 4 ph phsp
1 2

P 5 P
M" 5 MM,

» It is similar to the transformations of the gauge fields.
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Extension of Poincaré Algebra

The algebra L (P) is gauge invariant:
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» This is “off-shell” symmetry, the operator P? has any value.
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Extension of Poincaré Algebra

The algebra L (P) is gauge invariant:
LAAs Ly pAAs
a a

+ Z PAMAzAs Z phaprepseds 4 ph phsp
1 2

P 5 P
M" 5 MM,

v

It is similar to the transformations of the gauge fields.

v

This is “off-shell” symmetry, the operator P? has any value.

v

These generators are " gauge generators” .

v

All representations of the L) s, s = 1,2, ... are defined
modulo longitudinal terms.

G. Savvidy, Demokritos Nat.Res.Cent. Athens Generalisation of the Yang-Mills Theory



Extension of Poincaré Algebra

The reducible representation of Lg(P) has the following form:

Pt = kH,

9 9
— kY
ok, " oK,

Lélm)\s — 5)\1--.6)\5 ®Laa

M = ik il o g o),

0& Eu

The gauge transformation of Lél""\s induces the transformation
& — & 4 akt,

which is a gauge transformation of the photon polarisation vector.
The generators L)1 are indeed gauge generators.
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Extension of Poincaré Algebra

The irreducible transversal representation of the generators L;}l"')‘s

S
Li‘l“)‘s = H(fk‘)‘” + ei“’ei‘r" + e_iwei") @ L,

n=1
where the helicity vectors are e = (e7 Fie})/2,
L, € SU(N)

k, is the momentum vector k- e; = 0

the £ and ¢ are independent variables on the cylinder

peSl ¢eRrl.
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Extension of Poincaré Algebra

Using transversal representation one can calculate Killing forms:

(PHPYy =0
Lg <La; Lb> = 5ab7 Lp: <M,u1/§ P)\> =0
(M1 MOP) = A — P
Al As\
<Pu7 l/a1 > - 07
(M 12 =,
La(P)
(LorwAng Lyrtetestty = 5=0,1,2,3,...
<L21...>\n;LZ\n+1-m>\2$> _ 5ab8!(n>\1>\277)\3>\4mn>\2571>\2s + per)
where Lg - is internal algebra, Lp - is Poincaré algebra,

L (P)- the unifying algebra
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Extension of Yang-Mills Theory loop amplitudes

Asymptotic Freedom of Tensorgluons

The Yang-Mills non-Abelian tensor gauge fields

[e.e] 1 .
Au(z, L) = Z ol Aprgn (@) Lyt (1)
s=0 "
The field strength tensor
G (2,€) = B A, (1, ¢) — By Ay (w,€) — iglA, (. ) A(z,e)] (2)
and the Lagrangian density is

L(z) = ( Gy (2, L)Gy, (x, L) ). (3)
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The Lagrangian
Extension of Yang-Mills Theory Tree and 1-loop amplitudes

Asymptotic Freedom of Tensorgluons

In components the Lagrangian is

L=L1+Lo+= — 4GZVGa
- 4wa )\G,uy)\ 4GZVGaV T
+ 4GZV )\G,u)\ v + 4GZVV Z 2G,uVGa/\ 1//\+

where the field strength tensors are:

Q
3
|

aﬂAg _ aVAa +gfabc Ab Ac
Zu,)\ = a,uAV)\ 0 Aa)\ _|_gfabc( Ab Ac/\ + A Afx )7
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Extension of Yang-Mills Theory

The Lagrangian
Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Helicity spectrum of the tensorgluons

+1
+2,
+3,
+4,
+5,
+6,

+1
+2,
+ 3,
+ 4,
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The Lagrangian
Extension of Yang-Mills Theory Tree and 1-loop amplitudes

Asymptotic Freedom of Tensorgluons

a, aad’ C, Yy

Interaction Vertices of gluons and tensorgluons
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Extension of Yang-Mills Theory

Asymptotic Freedom of Tensorgluons

Tree level scattering amplitudes of (n-2)-gluons and 2-tensorgluons
calculated using BCFW formalism.G.Georgiou and G.S. [JMP 2011.

<ij >4 <<z'j>)2s—2

_ s =2 4.¢(4) [ pab
= 2 P
A ) s T e e

They reduce to the Parke-Taylor formula when s = 1.
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Extension of Yang-Mills Theory Tree aﬁd op amplitudes

Asymptotic Freedom of Tensorgluons

The collinear behavior:

a

b
| > SplitT$E(ate, b) x MITG(..., P2 L),
A==+1

Miree( . ate b, L)

n—1

%

Antoniadis and Savvidy, Mod.Phys.Lett.(2012)
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Extension of Yang-Mills Theory

Asymptotic Freedom of Tensorgluons

The splitting probabilities are:

ZQS.H — 5 2s+1
Pra(z) = Ci(G) (1- z)2s-1 + < z2s)1 ] ’
r — 2 2541
- 1 L2541
Prr(z) = C3(G) S Z] :
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The Lagrangian
Extension of Yang-Mills Theory Tree and 1-loop amplitudes

Asymptotic Freedom of Tensorgluons

The quark and gluon splitting probabilities of Altarelli-Parisi:

22
Py(z) = C2(R) 11t ot
)2
Pag(z) = Cg(R)Haz), (4)
P(z) = T(R)Z*+(1-2)7,
1 2 (1—2)*
FPoa(z) = C2(G) + +

z(1—2) 2(1—2) 2(1—2)]’

where Cy(G) = N, Cy(R) = 2= T(R) = L for the SU(N)
groups.
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The Lagrangian
Extension of Yang-Mills Theory Tree and 1-loop amplitudes

Asymptotic Freedom of Tensorgluons

Generalisation of DIGLAP evolution equations

q fldy y,t quJ( )+G(y7) qG’( )]
G(x,1) = ;,3 f; fij’ (v, )PGqJ( )+ Gy, ) Pac(%) + T(y,t) Por(%)

T(x,t) = 92 [} [G(y,t) Pra(2) +T(y,t) Pre(2)).

The af(t) is the running coupling constant (o = g%/47)

(0%

t:i
a(t) l+biat ’

(6)

where

bl = bquarks + bgluons + btensorgluons
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The Lag
Extension of Yang-Mills Theory Tree and op amplitudes

Asymptotic Freedom of Tensorgluons

1-loop amplitudes of gluons and tensorgluons can be calculated by
«) unitarity or by /3) one loop effective action

a) Unitarity

B) Effective Action

o0

Tepr= Y,

external legs

tensor-gluon
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The Lz
Extension of Yang-Mills Theory Tree a op amplitudes

Asymptotic Freedom of Tensorgluons

Both calculations gave the identical result :

(e
t) = ————
a() 1+bat ’
where
1252 — 1 —4ngT
by = 2=t (1287 = )C(G) —dnyT(R) )y

127

at s=1 it reproduces the Gross-Wilczek-Politzer result

Tensorgluons "accelerate” the asymptotic freedom !
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The Lagrangian
Extension of Yang-Mills Theory Tree and 1-loop amplitudes

Asymptotic Freedom of Tensorgluons

Generalisation of the YM effective action I'(A) gives 1-loop
effective action similar to G.S., Phys.Lett.B 1977

Summing the spectrum of the tensorgluons in external field

ko = (2n 4 14 2s)gH + ki

one can get
vim =Ty WH g9 L
2 4 AR p2 o 27
where now
1252 — 1
by = —Cy(G
! 1or 26,
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The Lagrangi:
Extension of Yang-Mills Theory Tree and 1-loop amplitudes
Asymptotic Freedom of Tensorgluons

Conformal Invariance

Consideration the contribution of tensor-gluons of all spins into the
beta function. One can suggest the zeta function regularization,
similar to the Brink-Nielsen regularization The spectrum is :

+1
+2, 0
+3, +1, +1

+4, +£2, £2, 0
+5, +£3, +£3, +£1, +1
+6, +4, +4, +£2, +2, 0
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The Lagrangian
Extension of Yang-Mills Theory Tree and 1-loop amplitudes

Asymptotic Freedom of Tensorgluons

and the summation over columns gives:

> (1252 > 123
by = Cz(G)[Z< —1—2
s=1 s=0
. (1252 > 123
+ Z( ..... | =
s=1 s=0
1 1 1

dr 127 T oam T

leading to the theory which is conformally invariant at very high
energies. The above summation requires explicit regularisation and
further justification.
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Extension of Yang-Mills Theory

Asymptotic Freedom of Tensorgluons

Example of non-singlet parton distribution function

—
x

o2

—
x

0.4

0.3 — TG off

0.2 —— TG on

0.1
0 L 1 L
0 0.2 0.4 0.6 0.8 1
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Proton Spin
Grand Unification

Proton Structure, its Spin and Tensorgluons

Spin sum rule of helicity weighted distributions:

1 1
2A2+AG+ZS:S AT, + L = 5h.
The lowest moment of the spin-dependent structure function

1
o= [ @)= I+ I+
0

The singlet part of the proton spin structure function

_ (QQ) a(Q?) 3(125% — 1) — 8nj
b= § (AZ —ny——AG) (1 T om 3(1282—1) — znf) *
+n a(Qz)AT o

2 *3(12s2 — 1) —2ng
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Proton Spin
Grand Unification

Proton Structure, its Spin and Tensorgluons

How the contribution of tensor-gluons changes the high energy
behavior of the coupling constants of the SM 7
The coupling constants evolve with scale as

1 1 M
- +2bln—, i=1,2,3, 10
a0~ ai) (0
consider only the contribution of s = 2 tensor-bosons:
For the SU(3). x SU(2)r x U(1) group with its coupling
constants a3, a2 and aq and six quarks ny = 6 and SU(5)
unification group we will get

110 1
- O =-——4
om 3’ o

the solution of the system of equations (10) gives

=i <ocez1(u) N 20@1#)) ’ ()

1
2bg = —5H4, 2by
2
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Proton Spin
Grand Unification

Proton Structure, its Spin and Tensorgluons

If one takes a(Mz) =1/128 and as(Mz) = 1/10 one can get
that coupling constants have equal strength at energies of order

M ~ 4 x 10°GeV = 40 TeV,

it is much smaller than the previous GU scale M ~ 104GeV
the value of the weak angle remains intact :
1 5ag(My)

sin? Oy = — + -

6 9as(Mz)’ (12)

the coupling constant at the unification scale is of order
a(M) =0,01.
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Proton Spin

s f ificati
Proton Structure, its Spin and Tensorgluons G Winiiieztitom

Summary

Asymptotic Freedom of Tensorgluons of spin s=1,2,

Bavm = 21 (1287 = 1)Co(G) — 4nsT(R) g
4872
i
g L
% N o
PROTON L i . N
Mgy = 4 x 10'GeV o

1 1
ZAY 4+ A AT, + L, ==
;AN + G+§s + o
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Prot I
Grand Unification

Proton Structure, its Spin and Tensorgluons

Visiting Chern Institute of Mathematics and his home in Tianjin.
The Calendar created by Prof. Shiing-Shen Chern in which each
month was devoted to an important mathematical discovery
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Proton Spin

Proton Structure, its Spin and Tensorgluons Crrznd) Uhnifiesiter

The Principle of Gauge Invariance and Fundamental Forces
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Proton Spin

Proton Structure, its Spin and Tensorgluons G Winiiieztitom

Physics and Mathematics

5

AIEAMA DD U

0 e G B B

Thank you!

Generalisation of the Yang-Mills Theory

G. Sawvidy, Demokritos Nat.Res.Cent. Athens



	Extension of Poincaré Algebra
	Extension of Yang-Mills Theory
	The Lagrangian 
	Tree and 1-loop amplitudes 
	Asymptotic Freedom of Tensorgluons

	Proton Structure, its Spin and Tensorgluons
	Proton Spin
	Grand Unification


