
Theoretical and Mathematical Physics, 148(1): 986–994 (2006)

NOTES ON DIVERGENCES AND DIMENSIONAL TRANSMUTATION

IN YANG–MILLS THEORY

L. D. Faddeev∗

We discuss the specificity of charge renormalization in Yang–Mills theory. We show that the values of the

running coupling constant in dimensional regularization and in momentum truncation coincide. Dimen-

sional transmutation is interpreted as replacing the dimensionless coupling constant with a dimensional

invariant of the renormalization group equation.
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Since its creation in the beginning of the 1930s, quantum field theory has been haunted by ultraviolet
divergences. Renormalization theory has led to phenomenal advances in quantum electrodynamics, but it
has given no satisfaction to its creators. The rebirth of interest in field theory in the form of Yang–Mills
theory has posed the question of divergences anew. It has gradually become clear that divergences do not
discredit the theory but on the contrary play a positive role as an effective means of violating conformal
invariance in the classical theory. A correct interpretation of dimensional transmutation (this term was
introduced in [1]) must solve the mass problem for the quantum Yang–Mills theory in the four-dimensional
space–time.

In this paper, I present my interpretation of this notion. Most of my notes have been known to some
extent, but the placement of accents may prove useful.

To begin, I consider an elementary example in nonrelativistic quantum mechanics, where dimensional
transmutation is readily explicable and has a clear mathematical interpretation. I then consider Yang–Mills
theory in the background field formalism, where charge renormalization is performed particularly simply
and leads to the appearance of the running coupling constant α(µ). I compare regularizations based on
introducing the truncation momentum Λ and on changing 4 → 4 − ε in the space dimension and show
that the values of α(µ) for them coincide. The dimensional parameter m appears as an invariant of the
renormalization group equation. In conclusion, I state a rather speculative hypothesis on how the parameter
m can enter the physical parameters in Yang–Mills theory.

With great pleasure, I dedicate this paper to the jubilee of Yurii Viktorovich Novozhilov, whose lectures
on quantum field theory I attended in my student days more than 50 years ago.

1. An elementary example

We consider the Schrödinger operator for a nonrelativistic particle located in the two-dimensional space
and interacting with a center concentrated at the origin,

H = −∆ + εδ(2)(x) = H0 + V.
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The main object of scattering theory is the resolvent R(z) = (H − zI)−1 with the structure

R(z) = R0(z) − R0(z)T (z)R0(z),

where R0(z) is given by the formula R0(z) = (H0 − zI)−1 and the T -matrix T (z) satisfies the equation [2]

T (z) = V − V R0(z)T (z). (1)

In the momentum space, the potential V is an integral operator with kernel,

V (p, p′) =
1

(2π)2

∫
ei(p−p′)xV (x) d2x.

In our example, we have V (p, p′) = ε. It follows straightforwardly from Eq. (1) that T (p, p′; z) is independent
of both p and p′, T (p, p′; z) = t(z), and the integral equation itself reduces to the algebraic relation

t(z) = ε − ε

∫
d2p

p2 − z
t(z) (2)

involving a divergent integral. We regularize it by introducing a truncation momentum Λ. We have

∫
|p|≤Λ

d2p

p2 − z
= π

∫ Λ2

0

dx

x − z
= π log

Λ2

−z
,

where the principal branch of the logarithm regarded as a function of z is considered, as a result of which the
right-hand side of the relation is defined on the z plane with a cut along the positive half-axis corresponding
to the continuous spectrum.

We rewrite regularized relation (2) in the form

1
t(z)

=
1
ε

+ π log
Λ2

−z
=

1
ε

+ π log
Λ2

m2
+ π log

m2

−z

and, following the renormalization theory paradigm stemming from Landau and Wilson, assume that the
coupling constant ε depends on Λ. We set

1
ε(Λ)

+ π log
Λ2

m2
= 0. (3)

It is clear that this can hold only for ε(Λ) < 0, which corresponds to attraction. We rewrite (3) in the form

m = Λ exp
(

1
2πε

)

and assume that ε(Λ) → 0 as Λ → ∞, in view of which the value of m remains finite. The new parameter
m enters the formula for the T -matrix,

t(z) =
(

π log
m2

−z

)−1

,

in which no trace of the seeding coupling constant ε has remained. As can be seen, t(z) has a simple pole
at z = −m2.
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It can be easily verified that the operator R(z) constructed using T (z) is in fact the resolvent of a self-
adjoint operator with a continuous spectrum on the positive half-axis and a discrete eigenvalue at the point
−m2. As was explained long ago in [3], this operator is a self-adjoint extension of a symmetric operator
determined by the Laplace operator −∆ on functions vanishing at the origin. In [3], we considered the
“realistic” case of the three-dimensional space instead of the “artificial” two-dimensional case, which is in
fact much more instructive.

Indeed, formula (3) gives an example of a phenomenon that was called dimensional transmutation in [1],
which is connected with violation of scale invariance. We elucidate this in greater detail. Under the change
of variable x → λx, the Laplace operator −∆ and the function δ2(x) undergo similar transformations.
In other words, they have the same dimensionality [L]−2, as a result of which the coupling constant ε is
dimensionless. At the same time, the new parameter m in the resolvent has a dimensionality, m = [L]−1,
and it fixes the scale in the operator H . It can be said that the scale covariance of the operator H is violated.
This violation is caused by the divergence that appears in formula (2), and it indicates the senselessness of
this formal expression at a finite value of ε. Only if we pass to the limit assuming that ε is a function of
the truncation momentum Λ and letting it tend to zero do we obtain a meaningful result.

We are thus convinced that divergences can play a positive role leading to interesting possibilities. This
idea has not yet become widespread, but it has already been shared by many specialists, among whom we
mention Jackiw [4], ’t Hooft [5], and Wilczek [6]. Its realization seems particularly attractive in Yang–Mills
theory, where it must lead to describing massive excitations.

2. Background field formalism for Yang–Mills theory

Charge renormalization in Yang–Mills theory is realized particularly simply in the background field
formalism. The main object of this formalism [7] is the effective action W (Φph) equal to the sum of 1PI
vacuum diagrams obtained by integrating the functional eiS(Φ) after the change of variable

Φ = Φph + ϕ.

The background field Φph must satisfy some physical boundary conditions and an equation of motion that
uniquely determines the field from these conditions. This equation coincides with the classical one only in
the zeroth order in � and involves quantum corrections.

The background field formalism is more suitable for Yang–Mills theory than the commonly accepted
formalism that uses external sources and Green’s functions and is hardly compatible with gauge invariance.
For our purposes, an important feature is that the only renormalization in the background field formalism
is charge renormalization [8].

Because the main objects of the formalism are well known, we confine ourself to only recalling the
formulas needed to elucidate the notation. The Yang–Mills field is described by the connection 1-form

A = Aa
µta dxµ

with the curvature
F = dA + A ∧ A,

where ta are the generators of the corresponding compact charge group G with the normalization tr(tatb) =
2δab and tr is the Killing form.

We consider only the four-dimensional space–time with a plane metric and use the Euclidean formula-
tion for definiteness. The classical action is given by the formula

S =
1

4g2

∫
tr F ∧ F ∗,
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where g2 is the coupling constant serving as the only parameter characterizing the theory. In the system
of units with � = 1 and c = 1, this parameter has no dimensionality because the forms A and F are
dimensionless.

The shift

A = Aph + ga

in the functional integral leads to a diagram technique with the following elements:

the propagators

G1 G0

and the vertices

V1 V3 V4 Ω

for the vector fields and the ghosts. The vertices V1, V3, V4, and Ω have the respective orders 1/g, g, g2,
and g. All these elements depend on the background field Aph. The coefficient function at the vertex V1

coincides with the classical equation of motion. The quantum equation of motion for the background field
can be represented as

+ = 0,

where the second term involves only 1PI diagrams.
Integrating over the variable a and the ghosts results in an expansion for the effective action,

W (Aph) =
1
α

W−1 + W0 + αW1 + α2W2 + . . . .

Here and hereafter, for convenience, we use the notation α = g2/(4π), and W−1 is the classical action,

W−1 =
1

16π

∫
tr F ∧ F ∗.

Furthermore, we have W0 = log detM0 − (1/2) log det M1, where M0 and M1 are differential operators
whose Green’s functions are the corresponding propagators G0 and G1, and the Wk are given by the sum
of 1PI vacuum diagrams with k+1 loops, for instance,

W1 + + + .

The presented expression involves divergences, and we now discuss them.
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3. Regularization and renormalization

Divergences in the background field formalism have been discussed by many authors (see, e.g., [9]
and [10]). The main result is that the divergent contributions to W0 and W1 have the structure

Wk = CkW−1 + finite part,

where Ck are divergent constants. The structure of divergences for Wk, k > 1, is more complicated, but
they all involve divergent terms proportional to W−1. As a result, the effective action acquires the form

W (Aph) =
(

1
α

+ C0 + C1α + C2α
2 + · · ·

)
W−1(Aph) + . . . ,

and it is natural to call the sum in the parentheses a renormalized charge,

1
αr

=
(

1
α

+ C0 + C1α + C2α
2 + . . .

)
.

The renormalizability means that the divergences in multiloop diagrams are also combined to form type
(αr)m factors, as a result of which the functionals W̃k in the effective action expressed in terms of αr,

W (Aph) =
1
αr

W−1 + W̃0 + αrW̃1 + . . . ,

contain no divergences.
After the regularization, the constants Ck depend on the corresponding parameter, namely, on the

truncation momentum Λ or on the dimension defect ε in the case of dimensional regularization. We consider
these regularizations consecutively.

Dimensional considerations show that in the first case, the Ck are polynomials in log(Λ/µ), where Λ
is the truncation momentum and µ is an auxiliary parameter needed to undimensionalize Λ. It appears as
the upper integration limit in the regularization of an integral of the form

∫
0

ds

s
∼ log

Λ
µ

′

and has the meaning of infrared truncation. It is clear that the renormalized charge depends on µ. Some
general considerations (see below) show that

1
αr(µ)

=
1

α(Λ)
+ c0 log

Λ
µ

+ c1 log
Λ
µ

α(Λ) +
(

c21 log
Λ
µ

+ c22 log2 Λ
µ

)
α2(Λ) + . . . , (4)

where

c0 = −11
3

K2(G)
2π

, c1 = −17
3

(
K2(G)

2π

)2

.

Here, K2(G) is the normalization of the Casimir operator in the adjoint representation. We have K2(G) = N

for the group SU(N). The most important property of this formula is that c0 and c1 are negative. This
precisely gives hope that αr(µ) is defined in the limit as Λ → ∞, α(Λ) → 0.

Contrary to the example in Sec. 1, we cannot set αr(µ) = ∞ here, because the higher loops involve
divergences that are not proportional to W−1. Setting Λ = µ in (4), we see that αr(µ) = α(µ) and that
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the nonrenormalized and renormalized coupling constants represent the values of the same function α(x)
for x = Λ and for x = µ.

We must confess that a satisfactory calculation of even the two-loop contribution in this regularization
has not yet been elaborated. Therefore, the assertion that formula (4) holds is still hypothetical, and we
state it proceeding from the compatibility with the renormalization group as explained in the next section.

In dimensional regularization, which was used in [9] and [10] mentioned above, the expansion

W (Aph) =
(

1
α

+
b0

ε
+

b1

ε
α +

b21

ε
α2 +

b22

ε2
α2

)
W−1 + · · ·

was obtained, where
b0 = c0, b1 =

c1

2
, b21 =

c21

3
.

At first glance, it seems that the renormalized charge does not contain the parameter µ. But a more detailed
consideration shows how this dependence can appear (cf. [9]). In the space of dimension D = 4 − ε, the
nonrenormalized charge has a dimensionality, α = α0(ε)µε, where α0 is dimensionless, as a result of which
we obtain the expansion

1
α̃(µ)

=
1

α(ε)
+

b0

ε
µ−ε +

b1

ε
α(ε)µ−2ε + α2(ε)µ−3ε

(
b21

ε
+

b22

ε2

)
+ · · · (5)

for the renormalized charge α̃(µ), and the dependence on µ does not disappear as ε → 0. As is shown in
the next section, the functions α̃(µ) and α(µ) coincide.

4. Renormalization group and dimensional transmutation

An important consequence of renormalization theory is the Gell-Mann–Low differential equation ac-
cording to which the running coupling constant α(Λ) satisfies the differential equation

Λ
dα(Λ)

dΛ
= β(α(Λ)), (6)

where the right-hand side is not explicitly dependent on Λ. Equation (6) means that by varying the
truncation momentum, we can fit the coupling constant α(Λ) such that the physical results are independent
of Λ.

Differentiating with respect to Λ, we conclude that formula (4) is compatible with Eq. (6) if we assume
that β(α) has an expansion of the form

β(α) = β1α
2 + β2α

3 + β3α
4 + · · ·

and that
β1 = c0, β2 = c1, β3 = c21, c22 = −1

2
β1β2.

Of course, the renormalized charge α(µ) satisfies the same equation as α(Λ). This can be expressed by the
relation ∫ α(Λ)

α(µ)

dx

β(x)
= log

Λ
µ

.

We now show that α̃(µ) coincides with α(µ). Differentiating (5), we verify that α̃(µ) satisfies the
equation

µ
dα̃(µ)

dµ
= β(α̃(µ))
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if b0 = β1, b1 = β2/2, and b22 = −β1β2/6. Precisely these values of the coefficients b0, b1, and b22

were obtained in [11], which can be seen after a simple recalculation and correction of a misprint. Both
regularizations thus lead to the same expression for the effective action in the form of an expansion in the
running coupling constant α(µ). This expansion involves no divergences.

We now discuss dimensional transmutation. The parameter µ in the running coupling constant can
be arbitrary. The physics of the phenomenon must be independent of the choice of µ. The dimensional
parameter appears as a trajectory invariant for the renormalization group. We elucidate this following
Polyakov [12]. We must assume something about the global behavior of the β-function. We assume that it
does not change sign and that the integral

∫
dx/β(x) converges in the neighborhood of the point at infinity.

We introduce a function θ(α) by the relation

θ(α) =
∫ ∞

α

dx

β(x)
.

This function has negative values, it behaves as 1/(β1α) at small values of α, and tends monotonically to
zero as α → ∞. The relation ∫ α(µ2)

α(µ1)

dx

β(x)
= log

µ2

µ1

can be rewritten as
θ(α(µ1)) − θ(α(µ1)) = log

µ2

m
− log

µ1

m

or as
θ(α(µ)) = − log

µ

m
, (7)

where m plays the role of a separation constant. Rewriting (7) in the form

m = µeθ(α(µ)),

we conclude that m is an invariant of the renormalization group. This is precisely the dimensional parameter
in terms of which the effective action must be expressed. Polyakov calls m−1 the correlation length [12].
We note that the negativity of the function θ imposes a constraint on µ, µ ≥ m.

Rewriting (7) differently, we obtain an expression for the running coupling constant α(µ),

α(µ) = θ−1

(
log

m

µ

)
,

where θ−1(x) is the inverse function of θ(x). It maps the negative half-axis onto the positive half-axis, and
we have

θ−1(x) ∼ 1
β1x

as x → −∞,

θ−1(x) → ∞ as x → −0.

In the example in Sec. 1, the parameter m2 played the role of the coupling energy. Naturally, its ratio
to the parameter z in the resolvent was dimensionless. In Yang–Mills theory, this parameter must also enter
a combination with a dimensional physical parameter. The role of this dimensional parameter will most
probably be played by the vacuum energy density, which in turn is generated by a nontrivial condensate.
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We present a hypothetical pattern for this phenomenon. Together with Niemi [13], we discussed a
change of variables for Yang–Mills SU(2) fields and the corresponding stringlike excitations (see [14] for a
generalization to the case SU(3)). For our program to succeed, we need a condensate for the field

ρ2(x) = (A1
µ)2 + (A2

µ)2.

We set 〈ρ2〉 = H2. Many works have recently been devoted to discussing such a condensate of dimensionality
[L]−2 (see, e.g., [15] and the references therein).

The hypothesis is that the energy density is determined by the minimum of a function of the type
presented by Savvidy [16],

E(H) = − H4

θ−1
(
log(H/m)

) .

Here, the denominator involves α(m2/H). The function E(H) is defined for 0 < H < m, and it is negative
at H = 0 and H = m. The physical value of H is defined as the position of the minimum for E(H).

Of course, the above argument is still purely speculative, and only further investigation can reveal its
potentialities.

At this point, we end the notes on dimensional transmutation in Yang–Mills theory.
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