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Abstract. The Clay Millenium Problem on the mass gap for the Quantum Yang-Mills
Field Theory is commented upon. Particular emphasis is put on the importance of the
dimensional transmutation after the quantisation.
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Among seven problems, proposed for XXI century by Clay Mathematical Insti-
tute [1], there are two stemming from physics. One of them is called “Yang-Mills
Existence and Mass Gap”. The detailed statement of the problem, written by
A. Jaffe and E. Witten [2], gives both motivation and exposition of related math-
ematical results, known until now. Having some experience in the matter, I
decided to completement their text by my own personal comments. These com-
ments in no way show the direction for a solution of the problem. However they
could be useful for a person who has no background in physical literature but
decided to attack the problem.

1 What is Yang-Mills field

Yang-Mills field bears the name of the authors of the famous paper [3], in which it
was introduced into physics. From mathematical point of view it is a connection
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in fiber bundle with a compact group G as a structure group. We shall treat the
case when the corresponding principal bundle E is trivial

E = M4 ×G

and the base M4 is a four dimensional Minkowski space.
In our setting it is convenient to describe the Yang-Mills field as one-form A

on M4 with the values in the Lie algebra G of G:

A(x) = Aaµ(x)t
adxµ.

Here xµ, µ = 0, 1, 2, 3 are coordinates onM4; ta , a = 1, . . . , dimG— basis of
generators of G and we use the traditional convention of taking sum over indices
entering twice.

Local rotation of the frame

ta → g(x)tag−1(x),

where g(x) is a function on M4 with the values in G induces the transformation
of the A (gauge transformation)

A(x) → g−1(x)A(x)g(x)+ g−1dg(x).

Important equivalence principle states, that a physical configuration is not a given
field A, but rather a class of gauge equivalent fields. This principle essentially
uniquely defines the dynamics of the Yang-Mills field.

Indeed, the action functional, leading to the equation of motion via variational
principle, must be gauge invariant. Only one local functional of second order in
derivatives of A can be constructed.

For that we introduce the curvature-two form with values in G

F = dA+ A2,

where the second term in RHS is exterior product of one-form and commutator
in G. In more detail

F = Faµνt
adxµ ∧ dxν,

where

Faµν = ∂µAν − ∂νAµ + f abcAbµA
c
ν
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and f abc are structure constants of G entering the basic commutation relation

[ta, tb] = f abctc.

The gauge transformation of F is homogenous

F → g−1Fg,

so that the 4-form

S = tr F ∧ F ∗ = FaµνF
a
µνω

is gauge invariant. Here F ∗ is a Hodge dual to F with respect to Minkowskian
metric, and ω is corresponding volume element. It is clear, that S contains the
derivatives of A at most in second order. The integral

A = 1

4g2

∫
M4

S

can be taken as an action functional. The constant g2 in front of the integral is a
dimensionless parameter which is called a coupling constant. Let us stress, that
it is dimensionless only in the case of four dimensional space-time.

Remind that in general the dimension of physical quantity is a product of pow-
ers of 3 fundamental dimensions [L] — lenght, [T] — time and [M] — mass
with usual units of cm, sec and gr. However in relativistic quantum physics we
have two fundamental constants — velocity of light c and Plank constant � and
use the convention, that c = 1 and � = 1, reducing the possible dimensions to
the powers of lenght [L]. The Yang-Mills field has dimension [A] = [L]−1, the
curvature [F ] = [L]−2, the volume element [ω] = [L]4, so that A is dimen-
sionless as it must be, because it has the same dimension as �. We see, that A
contains terms in powers of A of degrees 2,3,4

A = A2 +A3 +A4

which means that Yang-Mills field is selfinteracting.
Among many approaches to quantizing theYang-Mills theory the most natural

is that of the functional integral. Indeed, the equivalence principle is taken into
account in this approach by integrating over classes of equivalent fields. There is
no place here to explain this purely heuristic method of quantization, moreover
it hardly will lead to a solution of Clay Problem. So we shall just write the main
formula with hope to appeal to the intuition of the reader. This formula gives
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a generating functional Z(Aas) for physical entities such as S-matrix. The field
Aas describes the asymptotical behavoir of the fieldsA, over which we integrate,
in time-like directions. Here follows the formula

Z(Aas) =
∫

exp{i
∫ (

1

4g2
FaµνF

a
µν+

1

2g2
(∂µA

a
µ)

2 + ∂µc̄(x)∇µc(x)

)
d4x}

∏
µ,a,x

dAaµdc̄
adca. (1)

Here the term exp i

2g2

∫
(∂µA

a
µ)

2d4x takes care of integration along the orbits of
the gauge transformation and the last term assures the true normalization of this
integration. There enter the variables c̄a(x), ca(x) which are the generators of
the Grassmann algebra so that the integral over them in Berezin sence [4] gives
representation of determinant of operator

M = ∂µ∇µ

Here ∇µ is a covariant derivative, acting on ca as follows

∇µc
a = ∂µc

a + f abcAbcc.

The explanation of this formula, first introduced by V. Popov and me [5] can
be found in any modern textbook on Quantum Field Theory. I can recommend
the text which I coauthored with A. Slavnov [6] or monograph by Peskin and
Shroeder [7]. As I already said for the goal of this comments just intuitive
grasping of this formula is enough.

2 What is the mass

It was the advent of the special relativity which has given a natural definition of
mass. A free massive particle has the following expression of the energy ω in
terms of its momentum

ω(p) =
√
p2 +m2.

In quantum version mass appears as a parameter (one out of two) of the irre-
ducible representation of the Poincare group (group of motion of the Minkowski
space).

In quantum field theory this representation (insofar as m) defines a one-
particle space of statesHm for a particular particle entering the full spectrum of
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particles. The state vectors in such a space can be described as functions ψ(p)
of momentum p and ω(p) defines the energy operator.

The full space of states has the structure

H = C ⊕
(∑

i

⊕Hmi

)
⊕ · · · ,

where one dimensional space C corresponds to the vacuum state and · · · mean
spaces of many-particles states, being tensor products of one-partical spaces. In
particular if all particles in the system are massive the energy has zero eigenvalue
corresponding to vacuum and then positive continuous spectrum from minmk
till infinity. In other words the least mass defines the gap in the spectrum. The
Clay problem requires the proof of such a gap for the Yang-Mills theory.

We see an immediate difficulty. In the formulation of the classical Yang-Mills
theory no dimesional parameter entered. On the other hand, the Clay Problem
requires, that in quantum version such parameter must appear. How come?

I decided to write these comments exactly for the explanation how quantization
can lead to appearence of dimensional parameter when classical theory does
not have it. This possibility is connected with the fact, that quantization of
the interacting relativistic field theories leads to infinities — appearence of the
divergent integrals which are dealt with by the proccess of renormalization.
Traditionally these infinities were considered as a plague of the Quantum Field
Theory. One can find very strong words denouncing them, belonging to the great
figures of several generations, such like Dirac, Feynman and others. However
I shall try to show, that the infinities in the Yang-Mills theory are beneficial —
they lead to appearence of the dimensional parameter after the quantization of
this theory.

This point of view was already emphasized by R. Jackiw [8] but to my knowl-
edge it is not shared yet by other specialists.

Sidney Coleman [9] coined a nice name "dimensional transmutation" for the
phenomenon, which I am going to describe. Let us see what all this means.

3 Dimensional transmutation

The most direct way to see, how "infinities" appear in quantumYang-Mills theory,
is to begin evaluation of the functional integral (1) in some approximate fashion.
The most evident is the “stationary phase” method. We put

Aµ = Acl
µ + aµ,
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where Acl
µ is a solution of classical equation of motion

∇µFµν = ∂µFµν + [Aµ, Fµν] = 0

with prescribed asymptotic conditions and leave quadratic form in a in the action.
Integral then is of Gaussian type and reduces to determinants.

In fact to take into account the integral over gauge orbit in this situation, it
is more appropriate to change the “gauge fixing” terms in the action, namely
substitute

∫
tr(∂µAµ)2dx by

∫
tr(∇cl

µaµ)
2dx, where

∇cl
µ · = ∂µ · +[Acl

µ, · ].
Corresponding normalizing determinant will induce the term∫

tr(∇cl
µ c̄µ∇µc)

2d4x

into action. Indeed, with this convention terms, linear in a will not appear.
The gaussian integral obtained in this approximation looks as follows

Z(Aas) = exp{iA(Acl)}
∫

exp {i[(M1a, a)+ (c̄,M0c)]}
∏

da dc̄ dc ,

where M1 and M0 are second order differential operators

(M1a)ν = (∇cl
µ )

2aν + 2[F cl
µν, aµ];

M0c = (∇cl
µ )

2c.

The logarithm of the functional Z is called the “effective action” and denoted by
W(A). We have

W(Acl) = 1

i
lnZ(Acl) = A(Acl)− 1

2
ln detM1 + ln detM0.

It is clear from the definition, that the functional W(Acl) is manifestly gauge
invariant with respect to gauge transformation of Acl.

There are many ways to evaluate the determinants of the differential operators.
We shall not discuss them here in detail, refering to physics text-books, e. g. [7].

However several highlights deserve to be mentioned. First of all we can
represent M1 and M0 as a perturbation of the laplacian, e. g.

M1 = � +Kµ∂µ + L,
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where � is Laplacian

� = ∂2
µ ·

andKµ andL— matrices, acting on aaµ, expressed viaAcl
µ and its first derivatives.

Using evident formula

ln detM1 = ln det � + ln det(I + �−1(K∂ + L))

we can drop the first term in RHS as an irrelevant (though divergent) constant
and thus essentially regularize the determinant. However the second term in
the RHS is still divergent due to the singular nature of the Green function �−1.
Using convenient formula

ln det(I + �−1(K∂ + L)) = Tr ln(I + �−1(K∂ + L))

=
∑ (−1)n

n
Tr
(
�−1(K∂ + L)

)n
(2)

we see, that several first terms in this expansion contain the divergent integrals.
We use notation Tr for the functional trace to distinguish it from tr in the Lie
algebra.

For example the term of second order in the expression (2) contains the ex-
pression

Tr(�−1L�−1L) =
∫∫

D2(x − y) trL(x)L(y) d4x d4y , (3)

where D(x − y) is a Green function of Laplacian. In four dimensional space
D(x) has singularity in the vicinity of origine

D(x) ∼ 1

(x, x)

so that integral (3) diverges logarithmically. There are terms in the expansion
which look to be divergent even more severely, but a careful treatment show, that

1) Only several lower order terms in expansion (2) are divergent.

2) Only logarithmic divergences are present.

3) The divergent terms depend on Acl only in local way, so that these terms
are proportional to

∫
P(x)dx whereP(x) is polinomial inA and its deriva-

tives.
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Let us illustrate the last point on the example of the integral (3). Rewriting

trL(x)L(y) = tr(L(y)− L(x))L(x)+ trL2(x)

we see, that the first term in the RHS leads to convergent integral and the second
one gives ∫

trL2(x)d4(x) ·
∫

d4y

(y, y)2

More careful treatment shows that only the divergence of the last integral at
y = 0 is relevant. Introducing cutoff (y)2 > ε2 we get finally the expression∫

trL2(x) d4(x) · ln
1

εm

as a divergent part, where the divergent log is multiplied by a local term. Note,
that we were to introduce another parameter m of dimension [L]−1 to be able
to write logarithm. This extra parameter characterize the regularization of the
integral. We shall see soon, that it has fundamental importance.

Usually small space cutoff ε is substituted by large momentum cutoff � =
1/ε, which would appear if we decided to calculate the terms in (2) via Fourier
transform. We shall use this convention in what follows.

Now let us invoke the gauge invariance ofW(Acl). The only local dimension-
less and gauge invariant functional of A is classical action. This means, that
W(Acl) gets the form

W(Acl) =
(

1

g2
+ c ln

�

m

)
Acl + finite terms. (4)

Parameter g2 does not enter finite terms, however they essentially depend on the
“normalization” parameter m. Now the most important property of the Yang-
Mills theory is that the constant c in (4) is negative. For the case ofG = SU(2)

c = − 1

8π2

11

3
.

Famous calculation of this result was done in the beginning of 70-ties [10] and
led to ressurection of Quantum Field Theory in the minds of physicists. The
reason for this can be found in the textbooks I already refered to. For our goal it
is important in the following sence. We see, that we can define a finite expression
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for the effective action if we allow the coupling constant g2 depend on� in such
a way, that

1

g2(�)
+ c ln

�

m
= 0 (5)

and go to the limit � → ∞. The negativeness of c is crucial for such a limit to
make sence.

The finite terms then define the physical effective action. It does not depend
on the original dimensionless coupling constant g2. Instead, it depends on a new
parameter m having dimension of mass. It is the new effective action which
should have physical interpretation, and now it has chance to lead to massive
particle spectrum as it contains the dimensional parameter. Of course I did not
show in any way how to describe this spectrum. Real work (which should lead
to the solution of Clay Problem) must be based on the control of full effective
action, for which our expressions give only “one loop” approximation. However,
I hope, that I was able to indicate the important property of Yang-Mills theory:
its quantum version is very different from the classical one. Regularization
of the theory may be done, but the conformal invariance of classical theory is
brocken. A dimensionless coupling constant of classical action is traded for
the dimensional parameter in quantum effective action. Moreover, through this
process of regularization and “dimensional transmutation” the effective action
can be introduced without divergences, defining the correct quantumYang-Mills
theory.

4 A simple mathematically clear example of “dimensional transmutation”

I shall give an explicite example in which initially divergent (and thus seem-
ingly meaningless) problem can be regularized in such a way, that dimensional
transmutation takes place and the limiting theory has well understood meaning.

The example employs the Schröedinger operator

H = H0 + V ; H0ψ = −�ψ, Vψ = v(x)ψ,

acting on function ψ(x) on the plane R
2. The potential v(x) is taken to be

“point-like”

V (x) = εδ(2)(x),

where δ(2)(x) is a δ-function. It is clear that both terms in H have the same
dimension [L]−2, do that the “coupling constant” ε is dimensionless.
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In treating the formal expression forH we encounter the infinity. Let us exploit
one way to see this and construct the resolvent of H

R(z) = (H − zI)−1.

The standard formulas of scattering theory (see e. g. [11]) tell us, that R(z) has
structure

R(z) = R0(z)− R0(z)T (z)R0(z),

where T (z) satisfies the equation

T (z) = V − VR0(z)T (z).

Let us write this equation in the momentum representation (use Fourier trans-
form). In this representation the kernel of operator V is a constant

v(p, p′) = ε

and kernel t (p, p′; z) of operator T (z) does not depend on p, p′ either

t (p, p′; z) = t (z).

The equation for T (z) takes the form

t (z) = ε − ε

∫
d2p

p2 − z
t (z)

or

1

t (z)
= 1

ε
+
∫

d2p

p2 − z
.

The integral in the RHS diverges at large |p|, thus the “infinity” appears in the
construction of the resolvent R(z). Introducing cutoff |p| < � we get

1

t (z)
= 1

ε
+ π ln

�2

−z = 1

ε
+ π ln

�2

m2
+ π ln

m2

−z .

Now if we take ε to be negative (case of attraction) we can go to the limit
� → ∞, ε → −0 in such a way that

1

ε
+ π ln

�2

m2
= 0, (6)
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so that we get for the limiting theory

t (z) = 1

π
· 1

lnm2/− z
.

We see, that the formula (6) is exactly the same as (5), so that the dimensional
transmutation in Yang-Mills theory and this example of point-like interaction is
the same. This was already observed by R. Jackiw [8], as was mentioned above.

Now, in this case the new dimensional parameter has a simple interpretation.
The function t (z) produces the simple pole for resolvent R(z) and z = −m2

corresponds to discreet spectrum. Thus physically the interaction produces a
bound state and dimensonal parameter m2 is its energy.

It is important to know, that the constructed operatorR(z) is indeed a resolvent
of some self-adjoint operator Hreg. Indeed, we have involution

R∗(z) = R(z̄)

and it is easy to check the Hilbert identity

R(z1)− R(z2) = (z1 − z2)R(z1)R(z2).

The mathematically clear interpretation of this operator Hreg was given by
Berezin and me [12] long ago. If one considers operator Ĥ0, defined by the
Laplacian on the domain, consisting of functions ψ(x) vanishing in the vicinity
of x = 0, it will not be essentially selfadjoint. Rather it will have indices (1,1)
allowing for a one parameter family of selfadjoint extensions. The operatorR(z)
is exactly a resolvent of such an extension and m is a corresponding parameter.

This consideration gives a mathematical validation to the process of regular-
ization and consequent dimensional transmutation. It presumably should help
to persuade the reader to believe, that our manipulations with Yang-Mills theory
eventually are to get a mathematical sence also.
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