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Abstract. For most measures in two-dimensional quantum Regge calculus proposed in the
literature we show that the average values of link lengthsl, 〈ln〉, do not exist for sufficiently
high powers ofn. In particular, this is also true for the nonlocal DeWitt-like measure introduced
by Regge and Lund. Thus the concept of length has no natural definition in this formalism and
a generic manifold degenerates into spikes. This might explain the failure of quantum Regge
calculus to reproduce the continuum results of two-dimensional quantum gravity. It points to
severe problems for the Regge approach in higher dimensions.

PACS numbers: 0460, 0460N, 0460G, 0240S

1. Introduction

In the path integral formulation of quantum gravity we are instructed to integrate over all
gauge invariant classes of metrics on a given manifoldM:

Z(3,G) =
∫
D[gµν ]e

−SEH[gµν ], (1)

where [gµν ] denotes an equivalence class of metrics, i.e. the metrics related by a
diffeomorphismM 7→M, andSEH[gµν ] denotes the Einstein–Hilbert action:

SEH[gµν ] =
∫
M

√
g

(
3− 1

16πG
R

)
. (2)

We have written the functional integral in Euclidean spacetime. In two-dimensional (2d)
spacetime this integral is well defined. In higher dimensions special care has to be taken,
either by adding higher derivative terms to the Einstein–Hilbert action or by performing
special analytic continuations of the modes which in higher dimensions are responsible for
the unboundedness of the Einstein–Hilbert action. In this paper we will mainly discuss 2d
gravity, but as will be clear the simple underlying reason for the problems we encounter
might persist in higher dimensions.

It is well know how to perform the functional integration (1). One introduces on the
space of all metrics of a given manifoldM the norm

‖δgµν‖2 =
∫
M

dDx
√
gδgµν(x)G

µναβδgαβ(x), (3)

whereGµναβ is the DeWitt metric given by

Gµναβ = 1
2(g

µαgνβ + gµβgνα + Cgµνgαβ). (4)
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This metric can be derived from symmetry considerations and from the requirement of
diffeomorphism invariance. The constantC determines the signature of the metric. LetD

denote the dimension of spacetime. ForC > −2/D, the metricGµναβ is positive definite,
and forC < −2/D, it has negative eigenvalues. In canonical quantum gravityC equals
−2. Using the DeWitt metric, the functional measure on the space of all metrics can then
be determined to be

Dgµν =
∏
x

√
det(
√
gGµναβ)

∏
µ6ν

dgµν(x)

∼
∏
x

√
1+ DC

2
g(x)

1
8 (D+1)(D−4)

∏
µ6ν

dgµν(x). (5)

This is the unique ultralocal diffeomorphism-invariant functional integration measure for
gµν . We get the measureD[gµν ] in (1) by an appropriate gauge fixing such that we divide
(5) by the volume of the diffeomorphism group.

This program has been carried out explicitly for 2d gravity by Knizhniket al, David,
and Distler and Kawai [1]. One finds

Z(3,G) ∼ 3 5h−5
2 e

1−h
2G , (6)

whereh denotes the number of handles ofM. The continuum derivation is usually based on
Ward identities or a self-consistent bootstrap ansatz, although attempts of a derivation from
first principle exist. However,dynamical triangulations(DT) represents a regularization of
the path integral, where an explicit cut-off (the link lengthε of each equilateral triangle)
is introduced [3]. Each triangulation is viewed as representing an equivalence class of
metrics since the triangulation uniquely defines the distances in the manifolds via the length
assignment of the links (ε for all links) and the assumption of a flat metric in the interior
of each triangle. The functional integral (1) is then replaced by the summation over all
triangulations of a given topology, and the class of such metrics can be viewed as a grid
in the class of all metrics. In the limitε→ 0 the summation over this grid reproduces the
continuum result (6).

An alternative and conceptually quite nice approach was studied in [4]. In these papers
the continuum functional integral over all metrics is replaced by the continuum functional
integral over so-called piecewise linear metrics, i.e. metrics which represent geometries
which are flat except in a finite number of points where curvature is located. If one
restricts the number of singularities to beV , say, one can repeat the usual continuum
calculations except that the final functional integration over the Liouville field becomes a
finite dimensional(3V − 6)-dimensional integral (if the manifold has spherical topology).
It is believed that this integral converges (in some suitable sense) to the continuum value
(6) for V →∞, although this has strictly speaking not been proven. The final,(3V − 6)-
dimensional integral requires some explicit regularization and it has not yet been possible
to perform this integration. However, since the measure used is the restriction of full
continuum measure to the class of piecewise linear metrics, and since this class of metrics
includes in particular all metrics used in DT itshould give the correct answer.

In the rest of this article we will discuss a formulation of 2d quantum gravity, which
we denote asquantum Regge calculus(QRC) and which has been used extensively as a
regularization of quantum gravity (for some reviews and extensive references see [5]).

Classical Regge calculus is a coordinate independent discretization of general relativity.
By choosing a fixed (suitable) triangulation and by viewing the link lengths as dynamical
variables one can approximate certain aspects of smooth manifolds. Each choice of link
lengths consistent with all triangle inequalities creates a metric assignment to the manifold
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if we view the triangulation as flat in the interior of the simplexes. Not all such assignments
correspond to inequivalent metrics, as is clear by considering triangulations of 2d flat space.
If we divide out this additional invariance we obtain for a given triangulation withL links an
L-dimensional subspace of the infinite dimensional space of equivalence classes of metrics.
This counting is in agreement with the one above, since the relation between the number of
links L and the number of verticesV where the curvature is located, is given byL = 3V −6
in the case of spherical topology. Quantum Regge calculus is defined by performing the
functional integral (1) on this finite dimensional space and then taking the limitL → ∞.
It is the hope that this (seemingly well defined) procedure, when applied to the calculation
of expectation values of observables, will produce results which converge in some suitable
way to the continuum values of the observables whenL→∞.

At this point an important difference between 2d QRC and 2d DT emerges: the first
procedure is adiscretizationof the continuum theory, while the latter in addition provides
a regularization. In 2d QRC no cut-off related to geometry is needed [6], while the DT-
formalism explicitly introduces a lattice cut-offε. One can of course choose to introduce
such a cut-off in 2d QRC too, since it is needed in higher-dimensional QRC [7]. However,
it will make no difference for the arguments we present, and sinceε should be taken to
zero at the end of the calculation, we have chosen to work directly withε = 0 for 2d QRC.

Numerical simulations have questioned if QRC agrees with continuum predictions [8].
We will show that QRC is unlikely to be useful in quantum gravity. More precisely, we

show that it does not reproduce the continuum theory of quantum gravity associated with (6).
It is difficult to say something rigorous about four-dimensional (4d) quantum gravity, since
we have no well defined continuum theory with which we can compare. But the problems
encountered in 2d QRC are likely to remain in higher-dimensional QRC.

There is presently no unique choice of measure to be used in QRC, in analogy with the
DeWitt measure (5) in the continuum.A priori this should not be viewed as a problem.
Also in the case of DT there is no unique choice, butuniversality in the sense introduced
in the theory of critical phenomena, should ensure that any reasonable change of measure is
irrelevant in the continuum limit. This has been verified in the context of DT by numerous
numerical simulations. In the next section we discuss the QRC measures proposed in the
literature. In section 3 we analyse the functional integrals which result from these measures
and show that none of the measures will allow us to reproduce the continuum 2d quantum
gravity theory. Section 4 contains our conclusions.

2. Regge integration measures

2.1. DeWitt-like measure

We can repeat the construction (3) of the norm of metric deformations under the restriction
that the deformations are constrained to represent the metric deformations allowed by QRC.
For alternative discussions, starting from the canonical approach to gravity, we refer to
[5] where the corresponding metric is denoted as theLund–Regge metric, referring to an
unpublished work of Lund and Regge. Since our derivation is valid in any dimension and
has as its starting point the functional formalism, we find it more appropriate to call the
measureDeWitt-like.

First note that anyD-simplex, in aD-dimensional piecewise linear manifoldM, can be
covered with charts(U, φ), where

U = {ξ ∈ RD+ |ξ1+ · · · + ξD < 1} (7)
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andφ : U → M is given by

φ(ξ) = ξ1y1+ · · · + ξDyD + (1− ξ1− · · · − ξD)yD+1, (8)

wherey1, . . . , yD+1 are the vertices of theD-simplex. In this wayM is equipped with a
manifold structure. On this manifold we use a ‘canonical’ metric, which on aD-simplex
with chart(U, φ) is given by

gµν(ξ) = ∂φ∂φ

∂ξµ∂ξν
(9)

This metric is compatible with the manifold structure and has the advantage that it can
be expressed solely in terms of the link lengths of the piecewise linear manifold. In two
dimensions (9) has the following form on a triangle:

gµν =
(

x1
1
2(x1+ x2− x3)

1
2(x1+ x2− x3) x2

)
, (10)

wherexi equalsl2i , andli are the link lengths of the triangle. We assume here and everywhere
below that the link lengthsli satisfy the triangle inequalities.

The areaA of the triangle can be expressed as

A =
∫

d2ξ
√
g(ξ) = 1

2

√
g = 1

2(x1x2− 1
4(x1+ x2− x3)

2)1/2. (11)

The fluctuation of the metric given in terms of theδxi ’s is

δgµν =
(

δx1
1
2(δx1+ δx2− δx3)

1
2(δx1+ δx2− δx3) δx2

)
. (12)

For a single triangle, the line element (3) can now be computed:

‖δgµν‖2 =
∫

d2ξ
√
g(ξ)δgµν(ξ)G

µναβδgαβ(ξ)

= A

2
(2δgµνg

µαgνβδgαβ + Cδgµνgµνgαβδgαβ)
= −2A detδgµν detgµν (C = −2). (13)

In the last line we have chosen the canonical value−2 for C, which greatly simplifies the
resulting expressions. From (10) and (12) we obtain

‖δgµν‖2 = 1

16A
((δx1)

2+ (δx2)
2+ (δx3)

2− 2δx1δx2− 2δx1δx3− 2δx2δx3)

= [δx1, δx2, δx3]
1

16A

[ 1 −1 −1
−1 1 −1
−1 −1 1

][
δx1

δx2

δx3

]
. (14)

For a general 2d triangulation withL links the line element is given by the sum of the line
elements (13) over all triangles:

‖δgµν‖2 =
∑
T

∫
d2ξ

√
gT (ξ)δgTµν(ξ)(G

T )µναβδgTαβ(ξ)

= [δx1, . . . , δxL]M

 δx1
...

δxL

 . (15)
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Figure 1. Figure for explanation of the general structure of the matrixM.

M is anL × L matrix, which has the following structure: for a closed surface each link
appears in two triangles in the sum (15). With the notation depicted in figure 1 we thus
have the diagonal entry

Mii = 1

A
+ 1

A′
, (16)

and the off-diagonal entry

Mij = Mji = − 1

A
. (17)

Off-diagonal entriesMij equal zero ifli andlj are not sides of the same triangle. It follows
that each row and column ofM has four nonvanishing off-diagonal entries for a closed
surface. Thus the matrixM is a weighted adjacency matrix for theφ4-graph which is
constructed by connecting the midpoints of neighbouring links in the triangulation, with the
weights given by (16) and (17).

Let T denote the number of triangles. From each row a factor(AA′)−1 can be factorized.
Since each triangle has three sides, a factor

∏T
k=1A

−3
k can be factorized from the determinant

of M:

detM =
T∏
k=1

A−3
k

∣∣∣∣A1+ A2 −A2 −A2 −A1 −A1 0 . . .

. . .

∣∣∣∣
=: P(A1, . . . , AT )

T∏
k=1

A−3
k , (18)

whereP(A1, . . . , AT ) is a polynomial in the areas of the triangles of the surface.P vanishes
whenever the area of two adjacent triangles vanish, for example when one link goes to zero.
This means thatP is a highly nonlocal function, because each monomial ofP contains at
least half of the areas of the surface.

From (15) we get that the DeWitt-like integration measure for QRC is given by the
square root of the determinant ofM:

dµ(l1, . . . , lL) = constant×
√
P(A1, . . . , AT )∏T

k=1A
3/2
k

L∏
j=1

lj dlj δ(4), (19)

whereδ(4) is a shorthand notation for the triangle inequalities satisfied by the linksli .
We have not been able to obtain a closed form ofP , but P can be determined in a

number of special cases, as will be discussed below. In the next section we will only need



3230 J Ambjørn et al

the fact thatP(Ai) is a function of the areas of the triangles and does not depend explicitly
of the link length.

The continuum measure (5) in two dimensions is

[Dgµν ] = constant×
∏
x

g(x)−3/4
∏
µ6ν

dgµν(x). (20)

Using g(x) ∼ A2, we see that the powers of the ‘local’ areas in the discretized measure
coincide with the continuum measure. On the other hand the discretized measure is nonlocal,
whereas the continuum measure is local.

Below we will analyse certain properties of the measure (19) and the analysis can be
performed without further complications for the following generalization:

dµ(l1, . . . , lL) = constant×
√
P(A1, . . . , AT )∏T

k=1A
β

k

L∏
j=1

lj dlj δ(4), (21)

which appears when the measure (13) is multiplied by the ‘local’ area factorA
1−β
i . This

generalization highlights that QRC does not fix the powers ofAi by any obvious principle,
since the areas are reparametrization invariant objects which have no simple local continuum
interpretation.

2.2. Other Regge measures

It is clear that the measure (19) is not suited for numerical simulations since it is highly
nonlocal. In addition it should be clear that this measure is not forced upon us by
the requirement of reparametrization invariance and ultralocality in the same way as the
continuum DeWitt measure. It is not even the DeWitt measure restricted to the class
of piecewise linear metrics. This measure was constructed in [4], as mentioned in the
introduction. It is simply a ‘translation’ of the DeWitt measure to the rather special class of
piecewise linear manifolds used in QRC. Thus it is natural to ask if there are other measures
which are local and which are equally good. The most common local measures which have
been used have the form (see [9] and references therein)

dµ(l1, . . . , lL) =
L∏
j=1

dlj
lαj
δ(4) (22)

and

dµ(l1, . . . , lL) =
∏L
j=1 lj dlj∏T
k=1A

β

k

δ(4). (23)

The last measure is similar to the DeWitt measure except that the nonlocal term is missing.
One argument for such choices comes from the discretized Regge measure in one

dimension. A one-dimensional (1d) Regge-manifold consists ofL straight lines of length
li (xi = l2i ), i = 1, . . . , L (see figure 2). The ‘canonical metric’ is thusgiµν = [xi ]. Using
this, we can immediately write down the norm:

‖δgµν‖2 =
L∑
i=1

∫
dξ
√
gi(ξ)δgi(ξ)Giδgi(ξ) = 1

2(2+ C)
∑
i

x
−3/2
i (δxi)

2. (24)

The measure is thus given by

dµ(l1, . . . , lL) = constant×
L∏
i=1

x
−3/4
i dxi = constant×

L∏
i=1

l
−1/2
i dli . (25)
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Figure 2. A 1d Regge-manifold.

In this case we have a a general factorization of(1+ C/2D) as in the continuum and the
measure is local†. However, this is not true in higher dimensions, as shown above. One
of the purposes of the derivation of the DeWitt-like measure inD = 2 is to show that
one cannot use (24) as a motivation for (22) and (23) in higher dimensions. Nevertheless,
from the point of view of universality all measures discussed above should be equally good,
provided they lead to the correct continuum limit.

2.3. The DeWitt-like measure for special geometries

In this subsection we derive the DeWitt-like measure for a number of simple 2d geometries.

2.3.1. Two triangles glued together.For the case of two triangles of areaA glued together
along the links, the total number of linksL is 3, and the matrixM assumes the following
form:

M = 1

8A

[ 1 −1 −1
−1 1 −1
−1 −1 1

]
. (26)

The measure dµ(l1, l2, l3) is then

dµ(l1, l2, l3) = (detM)1/2
3∏

j=1

lj dlj δ(4) = constant× 1

A3/2

3∏
j=1

lj dlj δ(4). (27)

2.3.2. Tetrahedron. For the tetrahedron, the numberL of links is 6, and the numberT of
triangles is 4, see figure 3 for a parametrization. With this parametrization, the matrixM
assumes the following form:

M = 1

16



1
A1
+ 1

A3
− 1
A1

− 1
A3

− 1
A1

0 − 1
A3

− 1
A1

1
A1
+ 1

A2
− 1
A2

− 1
A1

− 1
A2

0

− 1
A3

− 1
A2

1
A2
+ 1

A3
0 − 1

A2
− 1
A3

− 1
A1

− 1
A1

0 1
A1
+ 1

A4
− 1
A4

− 1
A4

0 − 1
A2

− 1
A2

− 1
A4

1
A2
+ 1

A4
− 1
A4

− 1
A3

0 − 1
A3

− 1
A4

− 1
A4

1
A3
+ 1

A4


The determinant of this matrix can be computed, and one obtains the result

detM = constant× (
∑4

i=1Ai)
2∏4

i=1A
2
i

. (28)

The measure is therefore given by

dµ(l1, . . . , l6) = constant×
∑4

i=1Ai∏4
i=1Ai

6∏
j=1

lj dlj δ(4). (29)

† We remark that precisely inD = 1 one cannot use the canonical valueC = −2. From the point of view of the
continuum path integral this is not important since one can just choose a different value ofC.



3232 J Ambjørn et al

l

l

l

l
1

2

4

3

5

A

A

A A

3

2

4
1

l

l

6

Figure 3. Conventions for the tetrahedron.
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Figure 4. Conventions for the 1× n-torus.

Unfortunately the simple beauty of this formula does not extend to more complicated
geometries.

2.3.3. 1× n-torus. It is also possible to compute the measure for a thin torus explicitly.
The 1× n-torus is made of 3n links and 2n areas, see figure 4. Because the linksl3k−1 and
l3k are only coupled to links inside one block of two triangles, the 3n× 3n-matrix M has a
block-diagonal form, see figure 5. The block numberk has the following form:

1
A2(k−1)

+ 1
A2k−1

− 1
A2k−1

− 1
A2k−1

0

− 1
A2k−1

1
A2k−1
+ 1

A2k
− 1
A2k−1
− 1

A2k
− 1
A2k

− 1
A2k−1

− 1
A2k−1
− 1

A2k

1
A2k−1
+ 1

A2k
− 1
A2k

0 − 1
A2k

− 1
A2k

1
A2k
+ 1

A2k+1

 . (30)

By making simple row and column transformations on the matrixM one can extract a factor
4n
∏n
k=1(

1
A2k−1
+ 1

A2k
) from the determinant ofM. We expand the remaining determinant

using its linearity in the rows and in the columns. The result is

detM = (−4)n
n∏
k=1

(
1

A2k−1
+ 1

A2k

)( n∏
k=1

1

A2k−1
+ (−1)n−1

n∏
k=1

1

A2k

)2

. (31)
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Figure 5. Block-diagonal form of the matrixM.

Thus the DeWitt-measure for the 1× n-torus is

dµ(l1, . . . , l3n) = constant×
∏3n
j=1 lj dlj δ(4)∏2n

k=1A
3/2
k

n∏
k=1

(A2k−1+ A2k)
1/2

×
∣∣∣∣ n∏
k=1

A2k + (−1)n−1
n∏
k=1

A2k−1

∣∣∣∣. (32)

Note that the measure of this special geometry might vanish ifn is even. This happens for
instance if all triangles have the same area.

2.3.4. Hedgehog geometry.As a last example we compute the DeWitt measure for a
somewhat singular ‘hedgehog’ geometry which has played an important role in the analysis
of the DT version of 2d quantum gravity coupled to matter fields [3]. The building blocks
of the hedgehog geometry are ‘hats’ similar to the one shown in figure 6. This element
consists of two triangles which are glued together along the linksl2k−1 and l2k. The areas
of the triangles areA2k−1 andA2k, respectively. Now we takeN such elements and glue
them together successively along the linkslbk and lak+1 to make a hedgehog-like geometry.
After the gluing the verticesx andy will have the order 2N , whereas the verticesvk have
the order two.

If we now write down the rows and columns ofM in the orderlak , l2k−1, l2k, lbk , . . ., we
see thatM takes indeed the same form as the matrixM for the thin torus in the last section.
Therefore the measure will also be given by equation (32).
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Figure 6. Elements of the hedgehog.

3. Diseases of quantum Regge calculus

Let us recall some of the results from continuum 2d quantum gravity based on the functional
integral (1) in the case of manifolds with no handles†. The partition function is

Z(3) = 3−5/2, (33)

and the Hartle–Hawking wavefunctional for a universe with boundary which has length`

and one marked point is given by

W(`,3) = 1

`5/2
(1+ `

√
3)e−`

√
3. (34)

Finally, let us consider (closed) universes of fixed volumeV (i.e. fixed area since we
consider 2d universes). The (suitable normalized) partition function for such universes,
where in addition two marked points are separated by a geodesic distanceR, is given by

Z(R, V ) = V −1/4F(R/V
1
4 ), (35)

whereF(x) can be expressed in terms of certain hypergeometric functions [10, 11]. Here
we only need the fact thatF(x) behaves as

F(x) ∼ e−x
4/3

for x →∞. (36)

From (35) and (36) it follows thatany power of the average radius can be calculated as

〈Rn〉V =
∫ ∞

0
dR̃ Z(R̃, V )R̃n ∼ V n/4. (37)

This relation shows that the fractal dimension of 2d quantum gravity is equal to four!
[12, 10].

While we are unable to calculate (33) and (34) in QRC, we can show that (37) is not
satisfied in QRC. In fact, we will prove that in general (37) is not defined in QRC:

† Since all critical indices which can be calculated in continuum quantum gravity, using either the KPZ or the
DDK formalism, agrees with the critical indices which can be calculated using the DT formalism, we consider the
two as equivalent. There are a number of results which can only be obtained using the DT formalism. We will
still denote these as ‘continuum results’.
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Figure 7. Parametrization of the link lengths.

Theorem.For anyα or β in (21), (22) and (23) there exists ann such that for any linkl in
a given triangulation and any (fixed) value of the spacetime volume

〈ln〉V = ∞. (38)

As a consequence of this theorem the average radius〈R〉, or some suitable power〈Rn〉,
does not exist. This is in sharp contrast to the situation encountered in equation (37). It
shows that the ensemble average over geometries defined in QRC has no genuine intrinsic
scale set by the volume of spacetime or equivalently by the cosmological constant. In this
way the theory differs radically from the corresponding continuum quantum gravity theory.

Proof. Let the link l1 be connected to a vertexv of coordination numberN , see figure 7.
We want to analyse the situation where the vertexv is pulled to infinity while the global area
of the surface is held bounded. This can be done by keeping the link lengthslN+1, . . . , l2N
of the orderl−1

1 . Around v the link lengthl1 can be integrated freely from a large length
L to infinity. Then the integration ofl2, . . . , lN is constrained by triangle inequalities. For
the measure (22) the integration overl2, . . . , lN yields (lN+2 . . . l2N)

N−1
N l

(1−N)α
1 . Here we

symmetrized over the linkslN+1, . . . , l2N . The functional integral in the configuration space
corresponding to this situation around the vertexv is then given by∫ ∞

L

dl1 l
−Nα
1

∫ L/l1

0
dlN+1 . . .dl2N(lN+1 . . . l2N)

2N−1
N
−α. (39)

The additional factorlN+1 . . . l2N in (39) originates from the triangle inequalities for the
adjacent triangles. The integral overlN+1, . . . , l2N exists if 2N−1

N
− α > −1, i.e.

α < 3− 1

N
. (40)

Thus thel1 integration becomes∫ ∞
L

dl1 l
−Nα
1

(
L

l1

)N( 3N−1
N
−α)
∝
∫ ∞
L

dl1 l
1−3N
1 , (41)

This shows that〈l3N−2
1 〉 = ∞ which completes the proof for the measure (22). In a

similar way one can analyse the two other measures (23) and (21). To this end we have to
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Figure 8. Only spikes in a hexagonal geometry.

parametrize the areas in terms of the link lengths. In this part of the configuration space
the areas are given by the product of a small and long link length leading to extra factors
l
−β
1 . . . l

−β
N times l−2β

N+1 . . . l
−2β
2N . By performing the same analysis as above for (23) we see

that the functional integral is proportional to∫ ∞
L

dl1 l
1−3N+Nβ
1 . (42)

Thus〈ln1〉 = ∞ for n > N(3− β)− 2.
For (21) one can extract a factor of

∏L
i=1 l

1/2
i from the nonlocal factor

√
P . Performing

the analysis as above we again obtain the result (42). �

In the following we will analyse (38) for a number of different triangulations in order
to illustrate how sensitive the QRC measures are to the choice of triangulation, which is
another worrisome aspect of this formalism. For some triangulations the measure itself is
ill defined, for some triangulations〈l〉 = ∞ while for other measures the expectation value
of some link l may be finite while the expectation value ofl2 is infinite etc. We denote
〈ln〉 = ∞ as theappearance of spikes.

3.1. Spikes in a hexagonal geometry

Let us first analyse the case of a hexagonal triangulation. We subdivide a regular
triangulation as in figure 8 intoN hexagonal cells. We analyse the functional integral
in that part of the configuration space, where all centres of the cells form spikes. This
means that the 6N links l1, . . . , l6, etc. are very large. Furthermore, because the action is
proportional to the area of the whole surface, we have to keep the area bounded to prevent
exponential damping. Therefore the 3N link lengthsla, . . . , lf , etc have to be very small,
of the order ofl−1

1 .
In cell numberk one link, l6k+1, can be integrated freely from a large lengthL to

∞. The integration ofl6k+2, . . . , l6k+6 is then constrained by triangle inequalities. For the
measure (22) the integration overl6k+2, . . . , l6k+6 thus yields a factor(lak . . . lfk )

5
6 l−5α

6k+1 in
thekth cell. Here we have symmetrized over all the linkslak , . . . , lfk of thekth cell. Noting
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that we can assign the three linkslak , lbk , lck to the kth cell, the functional integral in the
spiky part of the configuration space is proportional to∫ ∞

L

N∏
k=1

l−6α
6k+1 dl6k+1

∫ L/l6k+1

0

N∏
k=1

(lak lbk lck )
5
3−α dlak dlbk dlck . (43)

The integration of the linkslak , lbk , lck only exists if

α < 8
3. (44)

If we perform the integration, an integral of the following form will remain:∫ ∞
L

N∏
k=1

l−3α−8
6k+1 dl6k+1, (45)

which only exists if

α > − 7
3. (46)

Furthermore, from (45) we see that the expectation value ofln1 will be infinite if n is larger
than or equal to 7+ 3α.

If we analyse the measure (23) along the same lines, we have to parametrize the areas
of the triangles in terms of the link lengths. For a spiky geometry the areas are given by
products of a small and a long link in the triangle. We thus get extra factors ofl

−β
6k+1 . . . l

−β
6k+6

and l−2β
ak . . . l

−2β
fk

. Then we can perform the analysis as above and obtain the bound

β < 11
6 (47)

for β. In this case we get no lower bound. The expectation value ofln1 will be infinite if
n > 4.

For this geometry one can extract a factor
∏L
i=1 l

1/2
i from the nonlocal factor

√
P of

the measure (21). Consequently, we get for this measure extra factors ofl
1
2−β
6k+1 . . . l

1
2−β
6k+6 and

l
1
2−2β
ak . . . l

1
2−2β
fk

from the areas. Using this we obtain the bound

β < 25
12 (48)

and the expectation value ofln1 will be infinite for n > 5
2.

Figure 9. A 12–3 geometry. All vertices of order 3 form spikes.
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Table 1. Bounds for the exponentsα andβ for the measures (22), (23) and (21) and values of
n for which 〈ln〉 is finite for the 12–3 geometry.

Measure Bounds Values ofn s.t. 〈ln〉 <∞
(22) − 5

3 < α < 7
3 n < 5

2 + 3α

(23) β < 5
3 n < 1

(21) β < 23
12 n < 1

4

Table 2. The upper part of the table shows bounds for the exponentsα andβ for the measures
(22), (23) and (21) and values ofn for which 〈ln〉 is finite in the case illustrated in the second
part of figure 10. The lower part of table shows the similar bounds for hedgehog geometries
constructed from the building blocks illustrated in figure 6.

Measure Bounds Values ofn s.t. 〈ln〉 <∞
(22) −2< α < 5

2 n < 2α + 4

(23) β < 7
4 n < 2

(21) β < 2 n < 1

(22) −1< α < 2 n < 1+ α
(23) Partition function undefined n < 0
(21) Partition function undefined n < − 1

2

3.2. Spikes in a 12–3 geometry

In a similar way we can analyse the partition function for a regular toroidal triangulation
whereN vertices have order 3 andN/2 vertices have order 12, see figure 9. We can form
spikes by pulling the vertices of order 3 to infinity keeping the area bounded from above.
The bounds for the measures (22), (23) and (21) are given in table 1. Note that these bounds
are sharper than for the hexagonal geometry.

3.3. Spikes in hedgehog-like geometries

One can get sharper bounds for more degenerate geometries. As explained above, these kind
of geometries occur in several phases of quantum gravity in the context of DT. However, the
considerations are essentially local and for very large triangulations it would be an unnatural
constraint on the possible choices of triangulations if hedgehog-like connectivity should not
be allowed locally. As a first example we analyse the geometry depicted in figure 10. Here
there are two vertices of orderN while all other vertices have order 4. This is a slightly
more regular configuration than the hedgehog geometry associated with figure 6.

If spikes are formed by every second vertex of order 4, see the second part of figure 10,
the bounds take the form given in upper part of table 2.

For a hedgehog configuration constructed from the spikes in figure 6 we get the following
bounds recorded in the lower part of table 2, when the spike-vertices are allowed to go to
infinity.

3.4. One vanishing link

Besides spikes one can also analyse the behavior of the functional integral if one or more
links go to zero as in figure 11. In the notation of figure 11 we demand thatla is small



Spikes in quantum Regge calculus 3239

Figure 10. A degenerate geometry. Spikes can be formed in several ways.

l

l

a

1

4

3

l2 l

l

Figure 11. If one link length (la) vanishes, the others stay finite. The whole area is again
bounded from above.

Table 3. Bounds on the exponentsα andβ for the case of one vanishing link length.

Measure Bound on exponent

(22) α < 3
(23) β < 2
(21) β < 9

4

whereas the other link lengths are bounded away from zero and infinity. Then one can
integrate the linksl1 and l3 freely and the integration ofl2 and l4 is constrained by triangle
inequalities. Their integration therefore yields a factorl2a and some powers ofl1 and l3
which depend on the measures. The resulting bounds are given in table 3.

4. Conclusion

We have shown that the predictions of QRC do not agree with known results of continuum
2d quantum gravity, as defined by the functional (1). No natural scale seems to emerge
from measures (22), (21) and even expectation values of suitable powers of the length of
a single link will diverge. The probability of having arbitrary large link length will never
be exponentially suppressed even if the volume of spacetime is kept bounded. This is in
contrast to the situation for continuum 2d quantum gravity where the probability of having
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two points separated by a distanceR is exponentially suppressed as

exp(−R
√
3)

for given cosmological constant, and suppressed as

exp

{
−
(
R

V
1
4

)4/3
}

if the volume of spacetime is kept fixed to beV [10].
In addition the finiteness of〈ln〉 for given values ofα andβ (and smalln where the

expectation value has a chance to exist) depends crucially on the chosen fixed triangulation
in QRC. In fact, for given values ofα andβ the bare existence of the partition function
could depend on the chosen triangulation. Clearly this is not a desirable situation.

We expect the situation to be similar in higher dimensional QRC. The measures (22)
and (23) have an obvious generalization to higher dimensional simplicial manifolds. The
DeWitt-like measure for aD-dimensional simplex can be obtained from the norm

‖δgµν‖2
D = δxMDδx, (49)

whereδx is theD(D + 1)/2 dimensional vector ofxi = l2i deviations. As in the 2d case
the line element for theD-dimensional triangulation is the sum of line elements (49) for
the individual simplexes constituting the triangulation. Thus the structure of theMtotal

D is an
obvious superposition of the basic matrices (49) in a way similar to the 2d case (see (15)).

For instance, inD = 3 the matrixMD is six dimensional (6d) with entries depending
on xi ’s. The measure

dµ =
√

detMtotal
D

L∏
i=1

dxi δ(4) (50)

for the closed manifold, constructed from two tetrahedra glued together, is equal to

dµ(l1, . . . , l6) = constant

V

6∏
i=1

li dli δ(4), (51)

whereV is the tree volume of the manifold. Thus the partition function of the two-simplex
gravity is given by∫

e−3V+
∑6

i=1 li (2π−2αi)δ(4) 1

V

6∏
i=1

li dli (52)

whereαi are the dihedral angles. (51) is the three-dimensional (3d) expression corresponding
to (27). Already the partition function corresponding to (27) is divergent (see table 2) and
producing spikes and (52) is even less well defined due to unboundedness of the action in
three dimensions. It is well known that this disease has to be cured by a cut-off involving
for instance higher derivative terms (for a definition in the context of integral geometry,
see [13]). However, the problem with spikes will reappear as the cut-off is taken to zero
and even if we completely drop the curvature term from the action the partition function
will not be well defined, precisely as in the 2d case. Although we have not investigated
higher dimensional cases in detail it seems hard to believe that QRC is a viable candidate
for the quantum gravity before one is able to find the correct measure able of reproducing
the results of the simplest known such theory, namely 2d quantum gravity.
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