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Abstract. High energy neutrinos produced in astrophysical processes will allow for a new way 
of studying the universe.  In order to detect the expected flux of high energy neutrinos from 
specific astrophysical sources, neutrino telescopes of a scale of a km3 of water will be needed. 
A Northern Hemisphere detector is being proposed to be sited in a deep area of the 
Mediterranean Sea. This detector will provide complimentary sky coverage to the IceCube 
detector being built at the South Pole. The three neutrino telescope projects in the 
Mediterranean (ANTARES, NEMO and NESTOR) are partners in an effort to design, and 
build such a km3 size neutrino telescope, the KM3NeT. The EU is funding a 3-year Design 
Study; the status of the Design Study is presented and some technical issues are discussed. 

1. Introduction 

Detecting high-energy neutrinos from astrophysical sources will be a major step towards a more 
complete understanding of the universe. These neutrinos can be detected by water/ice Cherenkov 
telescopes. Such detectors can contribute to the study of active galactic nuclei, supernova remnants, 
micro-quasars, gamma ray bursts, etc.  In addition searches for neutrinos from the decay or 
annihilation of dark matter particles (WIMPs), magnetic monopoles and other exotic particles can be 
carried out [1].  Studies indicate [2] that such signatures will only be detectable by detectors of sizes of 
a km3 of water or larger. Present existing telescopes [3], [4] are too small for this task.  

The IceCube [5] telescope being built at the South Pole will have an instrumented volume of ice of a 
km3. Neutrino telescopes are mostly downward looking detectors, and as a result the IceCube device 
will have a limited reach for sources in the southern sky. Thus  the Galactic plane with a multitude of 
possible high energy neutrino sources, such as supernova remnants, microquasars, pulse wind nebulae, 
as well as several unassociated gamma-ray sources reported by the H.E.S.S. telescope[6] cannot be 
studied by IceCube. 

To address this lack of sky coverage a neutrino telescope in the Mediterranean Sea has been proposed. 
The three pilot neutrino telescope projects in the Mediterranean (ANTARES [4], NEMO [7], and 
NESTOR [8]) are partners in an effort to design, and build such a km3 size neutrino telescope, the 
KM3NeT [9].  The Mediterranean Sea offers some unique advantages for such a device: deep sites 
near the shore, clear waters, and periods of good weather needed for sea operations. The KM3NeT 
consortium consists of 37 Institutes from 10 European Countries [10]. The KM3NeT will be an 
interdisciplinary research infrastructure, serving as a deep water facility for associated sciences, like 
marine biology, oceanography, earth and environmental sciences, in addition to being a neutrino 
telescope. 
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2. Status of KM3NeT 

 
The EU has initiated a 3-year design phase for KM3NeT which started in February 2006, and will 
conclude in 2010 with the publication of a Technical Design Report.  A Preparatory Phase (PP) will 
follow, overlapping for one year with the Design Study.  The PP will address political, governance, 
and financial issues of KM3NeT, including the site selection. The PP will also include prototyping 
work, in view of the start of the telescope construction in 2011. The overall cost of KM3NeT is 
estimated to be 220 -250 M€.   KM3NeT is part of the ESFRI (European Strategic Forum on Research 
Infrastructures) roadmap [11] for future large scale infrastructures. 

3. Detector Layout   

The Design Study has as a goal the design of a detector with the highest sensitivity. Minimum 
requirements are an instrumented volume of at least 1 km3, with angular resolution of about 0.1o for 
neutrino energies above 10 TeV, sensitivity to all neutrino flavors, and a lower energy threshold of a 
few hundreds of GeV (and around 100 GeV for pointing sources). Neutrino Cherenkov telescopes are 
lattices of a large number of photo-detection units that detect the Cherenkov light. These units, the 
optical modules (OM), contain one or more photomultipliers (PMT) and are enclosed in a pressure 
resistant, waterproof glass sphere. The OMs used to date contain one large PMT (typically 10”). The 
OMs are arranged so as cover the instrumented volume. The specific choice of PMTs, their  
arrangement in the OM, as well as the layout of OMs in the instrumented volume are being studied 
with detailed MC simulations, in order to optimize the sensitivity of the detector.  
 
Various OM configurations and detector layouts have been studied [12].  Examples of possible OMs 
can be seen in Fig. 1. These include OMs with a single PMT, double OMs, and OMs with many small 
PMTs inside. A number of detector layouts have been evaluated, with strings of vertically equidistant 
OMs arranged in cubic, ring, hexagonal, clustered or mixed layouts (Fig. 2). The instrumented volume 
has been kept constant to 1 km3 and the total photocathode area was kept constant.  
 
The effective area for neutrinos[13] as a function of  energy is shown in Fig. 3 where the KM3NeT 
configuration-1 detector consists of 127 vertical strings each with 25 OMs arranged in a hexagonal 
pattern, 100 m horizontal spacing, 15 m vertical spacing between OMs and 3 large PMTs per OM, 
similar to the ANTARES configuration. The configuration-2 detector is a structure of 225 vertical 
strings each having  36 OMs, arranged in a tetragonal  pattern  with inter-line horizontal spacing of 95 
m, vertical spacing between OMs 16.5 m, with each OM containing 21 3” PMTs. The effective area 
calculation includes full simulation of the neutrino interaction, muon propagation, Cherenkov light 
transmission, track reconstruction and event selection. Optical noise of 40 kHz due to 40K decays in 
the sea water was added, as measured by NESTOR [14] and NEMO [15] in the respective sites. The 
higher effective area of the KM3NeT detector configurations compared to Ice-Cube can be explained 
in terms of the higher photocathode area and the better angular resolution of the water detector.   

4. Detector Components and Procedures  

The recovery and repair of faulty components from the deep sea is very difficult. Therefore, the 
reliability of all deep sea components is absolutely essential.  Design choices being considered 
towards improved reliability include simplifying the design and reducing the number of connections 
that have to be mated in the sea. The possibility of transmitting all data-to-shore via optical fibre and  
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reduction of the in-sea electronics using a photonics-based network [16] is also being studied. In this 
scenario, the OM signal is impressed with an optical reflector/modulator on an optical signal coming 
in from the shore. The modulated signal is transmitted to shore and time stamped at the shore end, thus 
necessitating no lasers or digitization electronics in the deep. 
 
Additional research and development is under way to evaluate the performance of OMs with many 
smaller PMTs[17]. These have the advantage of higher quantum efficiency, better single photon 
resolution, smaller transit time spread, and provide directionality which helps in reducing noise from 
bioluminescense and 40K decays in the sea water. Also under study are 10” PMTs with segmented 
photocathode area [18], as another way of gaining directionality, and crystal hybrid PMTs[19]. 
 
Calibration of angular resolution, absolute position and angular offset, that can be achieved by using a 
floating sea-top array [20], similar to IceTop is under investigation. The position of the sea-top 
detector can be determined via GPS, and the signal from extensive air showers can be used to calibrate 
the underwater detector. Three floating stations separated by distances of 20m equipped with 16m2 of 
scintillator each will probably be sufficient for this scheme. 
 
The sheer size of the detector implies that new ways of sea deployment will have to be developed. The 
ANTARES mode of deployment with separate operations for the line deployment and the cable 
connection with a submersible remotely operated vehicle may be time consuming and impractical for a 
detector the size of KM3NeT with around 250 lines. A possible solution could be the method proposed 
by the NEMO collaboration in which each line is ”rolled-up” in a container[21] equipped with a 

 
Figure 1: Various types of Optical Modules.  

 

Figure 2: Cubic and ring 
detector layouts 

Figure 3: Neutrino effective areas vs. energy for two KM3NeT 
layouts, IceCube and ANTARES. The details of the KM3NeT 

configurations are described in the text. 
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release mechanism which unfolds the line after the container reaches the sea floor. By connecting 
several of these compact containers together, one sea operation may suffice for the deployment of 
several lines. Such a deployment model reduces both the time the interconnection of lines and the 
number of connections that have to be mated in the sea which are a significant source of potential 
failures. The feasibility of such a deployment model has been succesfully demostrated by the 
NESTOR collaboration when they deployed a tower module without any underwater operation [22]. 

5. Associated Marine and Earth Sciences  

The KM3NeT research facility will also serve the cause of marine and geophysical sciences. The 
existence of dedicated and permanent sea to shore connections allows the operation of long term real-
time monitoring stations serving these disciplines.   There is a separate working group within the 
Design Study, working on these issues.  Besides monitoring instrumentation attached to the strings of 
the neutrino telescope additional dedicated associated sciences stations are envisaged. 
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