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Abstract.  We have observed Cerenkov light, well 
below threshold, in an integrating Cerenkov counter 
used to determine particle composition of the second- 
ary hadron beam, which is the source of Fermilab 
narrow-band neutrinos. The phenomenon can be 
understood in terms of diffraction effects in a finite 
length counter caused by radiation emitted by par- 
ticles traversing the counter even when it is eva- 
cuated. At zero pressure, the light can be considered 
as transition radiation produced when particles enter 
and leave the counter. A standard Cerenkov diffrac- 
tion formula describes both the normal Cerenkov 
radiation and the light emitted below Cerenkov 
threshold. 

1. Introduction 

The emission of Cerenkov light [11 by a charged 
particle moving with velocity tic in a medium of 
refractive index n is usually treated as a 'shock- 
wave' phenomenon, yielding the condition that 
cos 0~ = 1/n fi where 0~ is the angle between the direc- 
tion of particle motion and the emitted light. An 
alternative derivation [2] of this Cerenkov condition 
simply invokes conservation of energy and momen- 
tum in the process particle--+particle+photon and 

the expression cOS 0c=7~R (1 he) 2 +~E-(n - 1)) yields 
�9 ~ p ,  \ 

where E is the energy of the radiating particle, and 
co the frequency of the radiation. For  h co ~ E, as is 
the case for very high energy beams, this is the same 

1 Present address: Fermilab Batavia, IL 60510, USA 
2 Present address: National Laboratory for High Energy Phys- 
ics (KEK Oho-Machi, Tsukuba-Gun, Ibaraki-Ken, 305 Japan 

as the result obtained using the shock-wave treat- 
ment. In both treatments, the Cerenkov light is emit- 
ted at a unique angle and only when the condition 
n fl > 1 is satisfied. 

A more complete treatment of Cerenkov light 
emitted in radiators of finite length [3-53 shows that 
the radiation is not produced at a unique angle but 
is in fact produced with a diffraction-like angular 
intensity distribution. This distribution has a peak at 
the nominal Cerenkov angle, and a spacing between 
lobes given by A O=2/LsinO c where 2 is the wave- 
length of the light, L the length of the radiator and 
0 c the Cerenkov angle. It is known that these diffrac- 
tion effects can limit the ability of Cerenkov coun- 
ters to resolve different particles [5,6]. Usually, 
however, gas-filled counters designed to identify in- 
dividual particles at high energies operate at Ceren- 
kov angles of 5 to 10 milliradians and are made 
tens of meters long in order to obtain sufficient light 
(the total light output being proportional to 
L sin 20c). Cerenkov counters used simply to deter- 
mine the composition of secondary beams [7,81 , 
that is the relative fractions of pions, kaons and 
protons, can be made to operate in an integrating 
mode since they do not attempt to identify indi- 
vidual particles and are typically required to operate 
at very high intensity. Such counters can be made 
short and operate at small ( < 2  milliradians) Ceren- 
kov angles, since it is not necessary that each beam 
particle produce several photons. However, it is im- 
portant to realize that diffraction effects in such 
short counters can be important, and must be under- 
stood in order to determine the beam composition 
correctly. 
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The broadening of the Cerenkov cone in a finite 
length counter implies that a particle with a given 
velocity, #c, will emit light at angles both smaller 
and larger than the nominal Cerenkov angle. Al- 
though it is implicit in the diffraction formula, it is 
not generally realized that the same effect implies 
that light will be emitted below Cerenkov threshold 
[4, 5], and that light can be observed even when the 
counter is evacuated. We will show that the remnant 
light at zero gas pressure can be attributed to tran- 
sition radiation generated when particles enter and 
leave the counter. For  any finite pressure, the identi- 
fication of this light as transition radiation rather 
than Cerenkov radiation is in a sense a matter of 
nomenclature because the light is a coherent super- 
position of both effects. 

In this note we report on the observation of such 
light as an aspect of the operation of Cerenkov 
counters subject to significant diffraction effects. 
Such counters are presently used for the determi- 
nation of the particle composition of secondary 
beams for neutrino experiments at CERN [7] and at 
Fermilab [8]. The understanding of the properties of 
such counters is important since incorrect particle 

fractions can be obtained if the diffraction tails are 
mistakenly interpreted as backgrounds. 

2. The Experimental Set-up and Technique 

We shall discuss data obtained with two different 
Cerenkov counters used to determine the particle 
composition of the secondary beam, which acts as 
the source for the narrow-band neutrino beam at 
Fermilab [9]. Counter A was used initially in Fer- 
milab experiment E356 [10] and was modified for 
later use in experiment E616 [8]. Counter B was 
used in experiments E594 and E701. The radiator in 
counter A was 1.9 m long, while that in counter B 
was 1.5 m long. Cerenkov light was viewed at a fixed 
angle, typically 1 milliradian, for counter A. For 
counter B, data were taken at angles of 1 and 2 mr. 

The optical systems of counters A and B are 
shown in Figs. 1 and 2, respectively (all the mirrors 
had front-coated surfaces). In Counter A the Ceren- 
kov light was focussed by mirror 1 onto an an- 
nular iris after reflecting from mirrors 2 and 3. Mir- 
ror 4 directed the light through a lens which fo- 
cussed the light onto a photo-multiplier. The Ce- 

PHOTOTUBE IJ~FOCUSINGLENS 
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Fig. 1. Cerenkov Counter A (used in 
Fermilab experiments E356 and E616) 
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Fig. 2. Cerenkov Counter B (used in 
[" 6 0  in. .[' Fermilab experiments E594 and E701) 
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renkov light emitted at an angle 0 was focussed to a 
circle at the location of the iris of radius f ( t an0)  
where f is the focal length of mirror 1. The 1 mr 
annular iris blocked all light except rays for Ce- 
renkov angles between 0.7mr and 1.0mr, (corre- 
sponding to @2) = 0.774 x 1 0 -  6). The shutter be- 
tween mirrors 2 and 3 could be closed remotely. The 
closed shutter measurements 'were used to determine 
the level of background light not originating from 
the main body of the Cerenkov counter. In counter 
B the light was focussed onto the annular iris after 
reflecting from mirrors 1 and 2. The shutter for this 
counter was located between mirror 1 and mirror 2. 
Both counters had an additional shutter around the 
photo-multiplier to help identify background due to 
particles producing Cerenkov light in the glass of 
the phototube itself. Counter B was constructed with 
fewer mirrors in order to reduce the number of 
reflecting surfaces that could accumulate dust. Note 
that in both counters, the beam passed through the 
primary mirror (Mirror 1) which defined the down- 
stream end of the radiator region. 

The principles of the experimental technique can 
be illustrated by considering ]how an ideal Cerenkov 
counter with no diffraction effects could be used to 
determine the particle composition of a perfectly 
parallel beam of unique momentum p. The number 
of photons of wavelength 2 emitted by a particle of 
velocity fi c traversing a long (L > 2/(sin 0c)) gas filled 
counter is given by [3J 

dN 2 ~  
d 2 -  22 Lsin 20c (1) 

where c~ is the fine structure constant. Light is emit- 
ted only at the Cerenkov angle 0 c which is given by 

1 
cos 0 c - (2) P~ 

where n is the index of refraction of the gas. For a 
photo-multiplier tube with a typical quantum efficien- 
cy in the visible spectrum, the number of photoelec- 
trons is given by [6, 11] 

Npe =BL sin 2 0~ (3) 

where B = 50 to 60 cm-~ (for a glass phototube win- 
dow) or B =100  to 150cm -~ (for a quartz phototube 
window). For a 1 meter long counter, operating at a 
1mr Cerenkov angle, the above equation yields 5 
x 10 3 photoelectrons per particle. This illustrates 

that for such a counter the light intensity must be 
integrated over a large number of particles. 

The pressure dependence of the index of refrac- 
tion n for helium gas is given by the expression n = 1 
+kP~. Here P,. is the pressure and k is a constant 
which is proportional to l/T, where T is the absolute 
temperature. At room temperature, the average val- 

ue of k for Helium gas is 4.308x10 -s  (Hgmm) -a, 
averaged over wavelengths ((2)  -~ 4000 A) in the 
optical region. 

For small Cerenkov angles, and [3 close to 1.0, (2) 
can be rewritten as 

/q,l 2 

02=2kP, �9 p2 (4) 

where m is the rest mass of the incoming particle. For 
a monoenergetic parallel beam traversing an ideal 
counter, with an annular iris before the phototube, 
accepting light at angles between 0 A and 0B, light 
will be detected only for pressures between PA and 
PB where 

PA = ~ (0~ + m2/p 2) 

(5) 
e, = ~ ( o~ + m2 /p~). 

The light intensity detected will be proportional to 
sin z 0, for 0 between 0 A and 0 B, and to the number 
of particles of mass m. If the beam contains several 
particle types, all of the same momentum but of different 
masses, e.g. positrons, muons, pions, kaons and pro- 
tons, then there will be no light observed through 
the iris as the pressure is varied, except for pressures 
in bands which correspond to the regions between 
PA and PB for each particle type. The light intensity 
versus pressure is shown in Fig. 3 for this ideal case. 
Since the amount of Cerenkov light emitted by a 
particle only depends on 0 C and the iris accepts only 
a well defined angular interval, the integral of the 
light intensity in any given (PA--PB) band is pro- 
portional to the number of positrons, muons, pions, 
kaons or protons in the beam. Such a pressure curve 
can therefore be used to determine, on a statistical 
basis, the fractional particle composition of any sec- 
ondary beam. 

The Cerenkov curve in Fig. 3 illustrates (for an 
ideal counter) the principle of determining particle 
fractions through the integrating technique. In prac- 
tice, the pressure curve for each particle type is 
broadened by several effects, including the angular 
divergence of the beam, the finite momentum spread 
of the beam, the variations of the index of refraction 
with wavelength (optical dispersion), any optical 
aberrations in the counter, as well as by Cerenkov 
diffraction [12]. For our beam, the effective rms 
angular divergence is 0.14mr and the effective mo- 
mentum spread is 10 ~o. The effective angular disper- 
sion is in general smaller than the true dispersion, 
because part of the angular dispersion broadening 
can be compensated for by moving the iris from the 
focal point of the mirror (i.e. a source at infinity) to 
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the location of the focus for rays originating from 
the production target. The above beam-related dis- 
persions produce a broadening of the angle of the 
Cerenkov cone, or, equivalently, smear the peaks in 
the Cerenkov pressure curves. For  a 1 mrad iris, the 
broadening due to angular dispersion of the beam is 
given by 

A 0 . . . .  = 0 . 1 4  m r a d  

O(A O) 
(AP,.)- k - 2 . 9 m m H g .  

(6) 

For  a 200 GeV secondary beam, the broadening due 
to the 10% momentum bite is given (for pions, 
kaons and protons) by 

(Ap/p) m(~) 
d 0rm s -- 0 

= 0.06 mr (re), 0.7 mr (K), 2.5 mr (p) 

(APr)=(Ap/P)k (m~ 2 ) 

= 1.1 mmHg(~), 14mmHg(K),  50mmHg(p). 

(7) 

The variation of the index of refraction with wave- 
length leads to optical dispersion broadening. For  
Helium gas at atmospheric pressure and a tempera- 
ture of 20~ the values of n - 1  are [13] 33.27, 32.90 
and 32.67 (in units of 10 - 6  ) for wavelengths of 
2800•, 3500/~ and 4400~, respectively. The varia- 
tion of n - 1  for 3500<2<4500A is _+0.12x10 6 
This variation, weighted by the phototube spectral 
response, leads to the following dispersion broaden- 

ing (for 0 = 1 mr) 

A n/n 
A 0),m ~ = tan  0 = 0.13 mrad 

(8) An APr= (l~Z~_ l ) P~=(O.35 %)P~ �9 

The dispersion broadening yields AP,=0.05mmHg, 
0.3mmHg and 0.9mmHg for 200GeV pion, kaons 
and protons, respectively. In principle, these neglig- 
ible optical dispersion effects can be completely 
eliminated if a narrow band optical filter is inserted 
in front of the phototube. The temperature of our 
Cerenkov radiator was monitored, so small va- 
riations in n - 1  due to temperature changes can be 
corrected for. For example, temperature fluctuations 

of order 1 degree centrigrade i.e. - - ~ 1 / 3 0 0  lead 
n 

to a broadening which is similar to that due to 
dispersion (8). The broadening from optical imper- 
fections and astigmatism due to off-axis optics are 
smaller than those due to diffraction effects dis- 
cussed in the following section. 

3. Diffraction Broadening 

The number of photons per unit wavelength in a 
counter of finite length L is given by [3,4] 

d2N 2~c~ ( ~ ) 2 [ s i n x ]  2 
dZ d cos 0-- 2 - -  sin 2 0 (9) 

where in the equation above, 

L 1 x(O)=n ~ [~fi-cos O]. (10) 
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For a gas Cerenkov counter operating at small an- 
gles and/3 close to 1 x(O) can be rewritten as 

x(0) =~-~ [1 -/~2 + 02-2kP~] 

- n L  [ ~  

- - 2 , t .  + 02-- 2kPr . (11) 

In the limit of having a very long counter (L/2-+ oe), 
sin x 
- -  becomes a 5-function and (9) becomes 

x 

d2N - 27cz c~ c](x) (~)2 sin2 0 (12) 
d2 d cos 0 2 

which reduces to (1) when the 6 function is in- 
tegrated over all angles. 

By setting x=n in (10) (i.e. the first diffraction 
minimum) we see that A OD~vv, the separation be- 
tween the peak and the first diffraction minimum, is 
given by A ODIVF = 2/L sin 0---- 0.21 mr. For 0 = 1 mr, L 
= 1.9 m, and 2 of 4,000A, this A ODivv corresponds to 
a pressure broadening of 

0(/I 0DIFF ) 
(APr)DIVV -- k - 5 mmHg. (13) 

Comparison of the various causes of broadening in a 
1.9 m long Cerenkov counter shows that, at our en- 
ergies, the broadening due to diffraction effects is the 
dominant source of broadening of the pressure 
curves for low mass particles such as electrons, muons 
and pions. For higher mass particles, such as kaons 
and protons, the momentum spread is more impor- 
tant if Ap is as large as _+ 10 %. 

Diffraction broadening differs from other 
broadening effects because it results in radiation be- 
low Cerenkov threshold [4,5]. The angular diver- 
gence of the beam, for example, can only broaden 
the angle of the Cerenkov cone and therefore there 
will be no light if the pressure is below the nominal 
Cerenkov threshold (Pthreshold=m2/2kp2). T h e  dif- 
fraction formula (9), (11) however, predicts some ra- 
diation even at zero pressure (i.e., below threshold). 
This point is discussed in the following section. 

4. Cerenkov Light and Transition Radiation 

In the derivation of the Cerenkov diffraction for- 
mula, the boundary condition was imposed that no 
light is observed from regions outside the counter. 
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Fig. 4. Monte  Carlo Cerenkov pressure curve for a 1 mr iris and a 
165 GeV pion beam for a counter of L = I  m and L = 2 m .  Note 
that the low and high pressure tails due to diffraction effects are 
independent of the length of the counter. The light intensity at the 
peak is proportional to the length of the counter 

This is equivalent to saying that for optical frequen- 
cies the dielectric constant (e) of the counter win- 
dows is infinite. (That is, the value of n - 1  of the 
windows is much larger than 02 or 1/72.) The tran- 
sition radiation emitted in the process of the particle 
entering and leaving the counter is therefore an in- 
tegral part of the formula. We will show that, for 
our data, (9) yields the correct level of transition 
radiation in the counter. 

If we investigate the prediction of (9) and (11) in 
the region far from the nominal Cerenkov maximum 
(i.e. x+0)  (9) and (11) can be rewritten in the form 
(for small angles) 

d2N 8~ 02 sin2 x 

d2cos 0 ~ n 2  ( l - f l2+O2-2kPr)  2" (14) 

Note that for ]xl~>0 the average value of sinZx is 
equal to 0.5 and (14) shows that the counter re- 
sponse at pressures away from the region of the 
Cerenkov maximum is independent of the length of 
the counter. Figure 4 shows the direct calculation of 
(9) for counters of length L =  1 m and L =2  m, for a 
1 mr iris, for 2 in the visible region. The curve, 
calculated for a 165GeV pion beam, shows that, 
while the response in the region of the peak changes 
by a factor of 2 for a counter with twice the length, 
the response on the high and low pressure tails is 
independent of the counter length. In order to illus- 
trate the relationship between (14) and transition 
radiation, we let L--+oe (i.e. {sin2x)=�89 and set the 
pressure to zero (i.e. vacuum). At zero pressure the 
expression yields 
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d2 N 4o: 0 2 

d2dcosO ~c2 [1-- j~2 + 02] 2 (15) 

Some physical insight into the origin of this ra- 
diation may be obtained by noting that this form is 
very similar to the formula for the radiation emitted 
when a particle crosses a boundary between two 
media (that is, transition radiation) [14]. Equation 
(15) is related to the formula for transition radiation 
[15] 

d2N 2c~ sin2 0 cos2 0 

d)~dcosO ~ 2 ( 1 - f i 2 c o s 2 0 )  2 

(e_l)(l_fl2~fi(e_sin20)~) 2 
( cosV  0Nd   2 (161 

derived for radiation emitted at the boundary be- 
tween vacuum and a single plate of dielectric con- 
stant e=a(2)+ib(2). The minus sign in (16) refers to 
radiation in the forward direction, or into the va- 
cuum (i.e. a plate-vacuum transition), the positive 
sign refers to radiation in the backward direction 
(i.e. a vacuum-plate transition). For  optical frequen- 
cies, lel is >> 1, and f o r / ~ 1  and small 0, (16) reduces 
to (17a), and (17b) for forward, and backward tran- 
sition radiation, respectively. 

d2 N 2c~ 0 2 

d2dcosO 7c2 (1--fl2-t-02) 2' (17a) 

daN 2o: 0 '2 l ~ _  1 2 

dAdcosO-rc2 (1 - f i2+0 '2)  2 ] / 7 + 1  (17b) 

Where 0' in (17b) is To-0. 
Note that the ratio of (17b) to (17a) is just the 

reflectivity of the mirror which in the optical range 
is very close to 1. Both the forward Cerenkov ra- 
diation and the transition light from the upstream 
window must reflect from the mirror before reaching 
the phototube. Therefore, the intensity reaching the 
phototube from the forward transition light will be 
the same as from the backward radiation from the 
mirror. Equation (17a) is precisely a factor of 2 
smaller than (15), as expected because of the two 
counter interfaces (the upstream window and the 
downstream mirror). This factor of 2 is correct in 
the limit L--, oo because in that case the light from 
the two interfaces cannot interfere. In a finite length 
counter, the contributions of the two interfaces in- 
terfere with each other (see Appendix B). The fact 
that the downstream interface (i.e. the mirror) is 
tilted by about 5 ~ does not change our conclusion 
because the direction of the backward transition ra- 
diation is along the mirror reflection [16] of the 
direction of the incident particle (see Appendix B). 

The diffraction formula (which assumes e = m for the 
interfaces) should work very well in the region of the 
Cerenkov maximum; at zero pressure we expect the 
expression to represent the radiation in the counter 
within the accuracy of our measurement, i.e. about 
107o. 

Experimental observation of transition radiation 
at optical frequencies was reported [17] in the late 
1950's. Previous observations [18] of radiation be- 
low threshold for electrons in water have also been 
attributed to diffraction effects. In the 1960's several 
experiments [19] have observed transition radiation 
in the optical frequencies in agreement with theoreti- 
cal calculations. The fact that backward optical tran- 
sition radiation from an inclined plane is emitted 
along the mirror reflection of the incident particle 
direction has been experimentally confirmed by 
more recent experiment [20] with electrons. These 
experiments have also observed interference between 
transition radiation emitted by two foils. 

In the following sections we will present experi- 
mental evidence that the diffraction formula de- 
scribes the radiation observed in the counter at all 
pressures. In the Cerenkov cone region it describes 
the diffraction broadening and for the case of an 
evacuated counter it describes the amplitude and 
angular distribution of the transition radiation emit- 
ted when the particle enters and leaves the counter. 

5. Data with 200 GeV Monochromatic Protons: 
The Region of the Diffraction Peak 

The response of each Cerenkov counter to a truly 
monoenergetic beam was obtained by exposing each 
to a 200GeV extracted proton beam (such a beam 
has a momentum spread of Ap/p less than 10-4). To 
match the condition under which the secondary 
beam is studied, the beam intensity was varied be- 
tween 10 l~ and 1011 particles delivered in a 3ms 
pulse. The angular divergence of this beam 
(A0<0.1mr) was smaller than the typical angular 
divergence of secondary beams. The Cerenkov light 
was viewed using an annular iris which accepted 
light between 0.7 and 1.0 mr. 

For  such a monochromatic beam, the diffraction 
formula predicts that the response of the counter as 
a function of pressure is dominated by diffraction 
effects. The data as a function of pressure is shown 
in Fig. 5. The solid line is the prediction of a Monte 
Carlo calculation which includes effects due to the 
angular divergence of the beam, optical dispersion, 
and the detailed optics of the counter (i.e. the off- 
axis optics) as well as the basic diffraction formula. 
The agreement in the region of the peak is excellent 
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Fig. 5 a-d. Data and the diffraction formula 
prediction for monochromatic 200 GeV 
protons. Note that diffraction effects result 
in light below Cerenkov threshold for 
200 GeV protons. The dashed line is the 
Monte Carlo without diffraction. Data were 
taken with counter B (experiments 
E594/E701) 

over three orders of magnitude. The dashed line in 
Fig. 5 is the prediction of the Monte Carlo without 
diffraction, but including all other effects. 

6. Backgrounds 

Data were taken with the main shutter of the counter 
open and closed on alternate beam pulses every 12 s. 
The closed shutter data measure the background 
light level from sources outside the main body of the 
counter. We determined that the dominant source of 
this light comes from Cerenkov radiation produced 
by halo particles in the glass walls of the phototube 
and in the lenses of the optics system. The black 
surfaces on the inside of the counters were tested 
and found not to be optically active at any signifi- 
cant level. Both shutter-open and shutter-closed data 
are shown in Fig. 5. As can be seen, the level of the 
shutter-closed data is nearly constant, with very little 
dependence on the gas pressure. The level of the 
shutter-closed data has therefore been added to the 
Monte Carlo before comparison with the data. The 
agreement between our Monte Carlo prediction and 
the data, and especially the fact that part of the peak 
is in a region below the absolute Cerenkov-threshold 
pressure, is a confirmation of the validity of the 
diffraction formula. Again, note that the dashed line 
in Fig. 5 is a prediction of the Monte Carlo without 
diffraction, but including all other effects. 

Far away from the diffraction peak there are 
additional tails in the data that are not predicted by 

the Monte Carlo calculation. These low level tails 
are due to other effects. The tail at high pressure has 
a contribution from scattering of light from dust 
particles on the mirror (at the level of 10 .4  of the 
primary Cerenkov light). We observed that this tail 
decreased after the mirrors were cleaned. The tail at 
low pressure and some part of the high pressure tail 
have contributions from interactions of the beam in 
material upstream of the counter. Both low pressure 
and high pressure tails increased when additional 
material was introduced in front of the Crenkov 
counter. When the amount of material in front of 
the counter was increased by a factor of 5, only the 
tails far from the peak increased in amplitude, while 
the large diffraction tails near the peak remained 
unchanged. 

Note that the prediction, based on the Cerenkov 
diffraction formula, shown in Fig. 5 indicates essen- 
tially no light for protons at very low pressures. In 
transition-radiation terms, this is because 200GeV 
protons do not have large 7; in terms of the diffrac- 
tion formula, this is because zero-pressure is some 
50 diffraction minima from the peak. Light at zero- 
pressure is observed primarily from particles such as 
pions and electrons with large 7, as discussed in the 
next section. 

7. Data with Pions, Kaons and Protons 

Figure 6 shows typical (1mr iris) Cerenkov pressure 
curves taken with secondary beams containing 
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Fig. da and b. Typical Cerenkov pressure curves taken with a 
10% momentum bite secondary beam containing pions, kaons 
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pions, kaon and protons. The secondary beams 
[8,9] were produced by targeting 400GeV protons 
on 26.7cm, and 30.5cm long BeO targets for the 
data taken with counters A, and B, respectively. The 
decays of pions and kaons yield narrow-band neu- 
trino beams used by Fermilab neutrino experiments. 
The secondary hadron beam has the properties de- 
scribed previously in Sect. 2. Pions, kaons and pro- 
tons are clearly resolved at all energies. Electrons 
can be resolved from pions only at the lower en- 
ergies (below 120 GeV) but pions and muons cannot 
be separated. A calculation [8] of the electron frac- 
tion of the beam (which includes sources such as 
Dalitz decays and photon conversions) agrees with 
the measurements at lower energies and predicts a 
small electron contribution (<  3 %) at the higher en- 
ergies. As the curves indicate, there is a significant 
and reproducible amount of light in the counter 
even when the counter is evacuated to a pressure of 
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intensity at higher pressure over the electron and pion peak 
region. The curve is the prediction of the diffraction formula 
Monte  Carlo (see Appendix A). (o) Data  from experiment E616, 
( i )  data from experiments E594/E701. (zx) data from experiment 
E356 

1 micron (shown as zero pressure). At this pressure 
all known particles at beam momentum are below 
Cerenkov threshold. As discussed in previous sec- 
tions, this light can be identified with transition ra- 
diation, emitted as the particles enter and leave the 
counter. Figure7 shows the measured ratio of the 
light intensity at zero pressure to the integral over 
pressure of the light intensity for pions and elec- 
trons. The solid curve, which is discussed in detail in 
Appendix A, is the prediction of the diffraction for- 
mula. The agreement is within the expected 10 %. 

8. The Angular Dependence 
of the Zero Pressure Light 

We have investigated the possibility that the light at 
zero pressure originates from excitation in the up- 
stream window (e.g. scintillation light). Such light 
would be isotropic and hence would not depend on 
the orientation of the counter with respect to the 
direction of the beam. At zero pressure, the tran- 
sition radiation is peaked forward, so the the ob- 
served intensity should be strongly dependent on the 
angle between the counter and the beam. To study 
this we replaced the annular iris with a hole which 
accepted all light with 0<0.5mr.  Figure 8 shows the 
intensity at zero pressure for 0 <0 .5 m r  as a function 
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sure limit is understood in terms of transition ra- 
diation. 

Our data indicate that when integrating Ceren- 
kov counters of short length are used in the de- 
termination of the composition of secondary beams, 
the tails due to diffraction must be included in the 
analysis of the pion, kaon and proton peaks. A 
Monte Carlo program which includes diffraction ef- 
fects should be used to determine corrections that 
relate the relative areas to the fractional particle 
composition of the beam. In addition, our ex- 
perience indicates that the analysis is simpler when 
integrating counters are tens of meters long, since 
this minimizes diffraction broadening. 

Acknowledgements. We thank the management and staff of the 
Fermi National Accelerator Laboratory and especially the Neu- 
trino Department, the Accelerator Division and the Physics De- 
partment for their support. We thank our collaborators in experi- 
ments E356, E616, E594 and E701 during which the Cerenkov 
data were taken and R. Walker who originally pointed out the 
importance of diffraction effects in our counter. This work was 
supported by the U.S. Department of Energy and the National 
Science Foundation. 

Appendix A: Transition Light and Cerenkov Light 

For a beam with a finite angular divergence and a 
finite momentum spread the integral over pressure 
of the Cerenkov intensity at a fixed angle is pro- 
portional to the total number of particles�9 The in- 
tegral over pressure of (9) is 

of the angle between the axis of the Cerenkov coun- 
ter and the incident beam. The solid curves (which 
are described in detail in Appendix A) are the pre- 
dictions of the diffraction formula at zero pressure. 
The dramatic difference in the angular distribution 
of transition light produced by electrons as com- 
pared to heavier particles is due to the difference in 
the phase angle Ix in (11)] in the interference term of 
the diffraction formula. The momentum dependence 
of the shapes of the curves in Fig. 8 is primarily due 
to the change in the particle composition of the 
beam. The curves also illustrate that at high energies 
(when the Cerenkov counter cannot resolve the elec- 
tron peak) the angular distribution of the transition 
radiation can be used to determine the electron frac- 
tion of the beam. 

We conclude that the diffraction formula for 
light in a finite length Cerenkov counter describes the 
radiation in the counter at all pressures including 
the case when the counter is fully evacuated�9 The 
non-zero result from the formula in the zero pres- 

4~z~ L 
Ic-  2 2(2k) 02dc~ (A1) 

At zero pressure, the total amount of transition light 
is proportional to the number of particles. The dif- 
fraction formula predicts transition light intensity at 
the level of 

2sin 2 ~zL [02 +m2/p2]} 
ir_4c< ~ 22 rC.~ [02 +m2/p2] 2 02 dc~ (A2) 

This formula is the same as the formula for the 
interference of transition radiation from two foils 
given by Wartski et al. [20]. The ratio of the zero 
pressure light to the integral over pressure is 

,13, 
f_f-_, _ (2k)2  in2/rcL 2 

I C 7 c 2 L  EO2+ma/p2] 2 �9 

8 1 For helium gas (2k=8.6 x 10- Hgmm- ), L =  1.9m, 
a 0.7/1.0mr iris ( ( 0 2 ) = 0 . 8 x 1 0  -6) and 2~4000A,  
(A3) yields. 
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{ ( m2J 2 i} 2sin 2 9.3 14 
f----3 x 10 -3 0.8 • 10 . 6  (A4) 

1 m2/p2 ~2 
0.g i -6l 

The interference term between the radiation emitted 
when the particle enters and the radiation emitted 
when the particle leaves the counter averages to 
approximately 0,5 when (A3) is integrated over all 
wavelengths in the visible region and over the finite 
momentum of the beam. In that case we obtain 

3 x 1 0  -3 
m2/p2 (AS1 [ 

~1-~ 0.8 • 10 -6 ]  

For p=200GeV/c ,  the term m2/p 2 is 6 .5x10 -12, 
0.49 • 10 - 6 ,  6.1 x 10 . 6  and 22 x 10 . 6  for electrons, 
pions, kaons and protons respectively. Therefore, 
pions and electrons will be the dominant source of 
the zero pressure light. The relative contribution of 
electron to the zero pressure light is a function of 
the momentum p, and the electron fraction of 
the beam. At p = 5 0 G e V / c  the electron contri- 
bution dominates and for p > 90 GeV/c the pion con- 
tribution dominates. The contribution of protons is 
small except at the highest momenta (p > 250 GeV/c) 
where the proton fraction of the beam is large. 

We have calculated the quantity F, the ratio of 
the zero pressure light level to the integral over the 
electron and pion peaks (using (A3)). 

F= ~f iRi  (A6) 
RI+R2 

where f l ,  f2, f3 and f4 are from (A3) (averaged over 
it in the visible region) for electrons, pions, kaons 
and protons, respectively and R~, R 2, R 3, R 4 are the 
fractional composition of electrons, pions, kaons and 
protons in the secondary beam. 

The comparison of the measured values of F and 
the calculated values are shown in Fig. 7. The calcu- 
lated curves were obtained from a Monte Carlo 
calculation which did not incorporate any of the 
approximations used in (A4) and (A5). 

In the study of the angular distribution of the 
zero pressure light the 0.7/1.0mr iris was replaced 
with a 0.5mr hole. For  L = l . 9 m  and i t~4000A (A2) 
yields 

4c~ 2sin2[0.37 x 107(02+m2/p2), 1 02dcosO. (A7) 
IT = ~ [0  2 -t- m2/p2,12 

The situation for 0<0 .5mr  is different from the case 
of the 0.7/1.0mr iris. At 0~_lmr, the phase angle in 

the numerator is large and ( s i n 2 x ) ~ 0 . 5  when aver- 
aged over 2. On the other hand, close to 0=0,  the 
phase angle is small and does not average to 0.5. 
This phase angle will be different for the electron 
and pion components in the beam. 

The values for the fractional particle composition 
used in the calculations of the curves for Figs. 7 and 
8 were obtained from a preliminary analysis of the 
Cerenkov curves. Final particle fractions will be 
published in future communications. The electron 
fractions used were those calculated in [8]. 

The zero pressure intensity for 0 <0 .5 mr  is 
shown in Fig. 8 as a function of the angle of the axis 
of the Cerenkov counter with respect to the incident 
beam. The solid curve is the sum of the contri- 
butions from the electron, pion, kaon and proton 
components of the beam. The depth of the dip at 0 
= 0 in the sum of all components is very sensitive to 
the electron to pion ratio because the electron con- 
tribution peaks at 0 = 0  and the pion contribution 
peaks at 0 =  _+ 1 mr. Thus the good agreement be- 
tween the Monte Carlo calculation and the data at 
all momenta is not only an experimental confir- 
mation of the diffraction formula but also a check of 
the electron fractions calculated in [8], 

Appendix B: Transition Radiation 
from Inclined Surfaces 

The downstream interface in the Cerenkov counter 
is the spherical mirror which focusses the light onto 
the iris. This mirror is inclined at about 5 ~ with 
respect to the direction of the incident beam. 

Transition radiation from particles incident on 
an inclined surface has been originally calculated by 
Pafomov [15-1. Recent detailed calculations [16] in- 
dicate that the angular distribution of the forward 
transition radiation (e.g. metal-vacuum interface) is 
peaked around the direction of the incident particle 
even when the interface is at an angle. The back- 
ward transition radiation (e.g. vacuum metal inter- 
face) from an inclined surface concentrates close to 
the direction of the mirror reflection of incident par- 
ticle velocity vector. Therefore, after reflecting from 
the mirror, the angular distribution of the forward 
transition radiation emitted as the particle enters the 
counter, will be very close to that of the backward 
transition radiation emitted from the mirror as the 
particle leaves the counter. This property of back- 
ward transition radiation is the explanation of the, 
previously unexplained, large difference [19,1 be- 
tween the angular distribution of forward and back- 
ward transition radiation observed in 1960's for par- 
ticles traversing metal foils at an angle of 60~ De- 
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tailed studies of forward and backward optical tran- 
sition radiation have been done by Wartski [20]. 

The transition radiation from the interfaces can 
also include some Cerenkov radiation which is gen- 
erated in the window material but not fully ab- 
sorbed 1-21], as well as radiation from surface irregula- 
rities [22]. We expect these, and effects due to the 
finite dielectric constant of the windows, to be smal- 
ler than the uncertainties in our data (_~ 10 9/0). 
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