

Available online at www.sciencedirect.com

Physics Letters B 639 (2006) 151-158

PHYSICS LETTERS B

www.elsevier.com/locate/physletb

Measurement of the isolated photon cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV

DØ Collaboration

V.M. Abazov^{aj}, B. Abbott^{bw}, M. Abolins^{bm}, B.S. Acharya^{ac}, M. Adams^{az}, T. Adams^{ax}, M. Agelou^r, J.-L. Agram^s, S.H. Ahn^{ae}, M. Ahsan^{bg}, G.D. Alexeev^{aj}, G. Alkhazov^{an}, A. Alton^{bl}, G. Alverson^{bk}, G.A. Alves^b, M. Anastasoaie^{ai}, T. Andeen^{bb}, S. Anderson^{at}, B. Andrieu^q, Y. Arnoudⁿ, M. Arov^{ba}, A. Askew^{ax}, B. Åsman^{ao}, A.C.S. Assis Jesus^c, O. Atramentov^{be}, C. Autermann^u, C. Avila^h, F. Badaud^m, A. Baden^{bi}, L. Bagby^{ba}, B. Baldin^{ay}, P.W. Balm^{ah}, D.V. Bandurin^{aj,*}, P. Banerjee^{ac}, S. Banerjee ac, E. Barberis bk, P. Bargassa cb, P. Baringer bf, C. Barnes ar, J. Barreto b, J.F. Bartlett ay, U. Bassler^q, D. Bauer^{bc}, A. Bean^{bf}, S. Beauceron^q, M. Begalli^c, M. Begel^{bs}, A. Bellavance^{bo}, S.B. Beri^{aa}, G. Bernardi^q, R. Bernhard^{ap}, L. Berntzon^o, I. Bertram^{aq}, M. Besançon^r, R. Beuselinck^{ar}, V.A. Bezzubov^{am}, P.C. Bhat^{ay}, V. Bhatnagar^{aa}, M. Binder^y, C. Biscarat^{aq}, K.M. Black^{bj}, I. Blackler^{ar}, G. Blazey^{ba}, F. Blekman^{ar}, S. Blessing^{ax}, D. Bloch^s, U. Blumenschein^w, A. Boehnlein^{ay}, O. Boeriu^{bd}, T.A. Bolton^{bg}, F. Borcherding^{ay}, G. Borissov^{aq}, K. Bos^{ah}, T. Bose^{br}, A. Brandt^{bz}, R. Brock^{bm}, G. Brooijmans^{br}, A. Bross^{ay}, D. Brown^{bz}, N.J. Buchanan^{ax}, D. Buchholz^{bb}, M. Buehler^{cc}, V. Buescher^w, S. Burdin^{ay}, S. Burke^{at}, T.H. Burnett^{cd}, E. Busato^q, C.P. Buszello^{ar}, J.M. Butler^{bj}, S. Calvet^o, J. Cammin^{bs}, S. Caron^{ah}, W. Carvalho^c, B.C.K. Casey^{by}, N.M. Cason^{bd}, H. Castilla-Valdez^{ag}, S. Chakrabarti^{ac}, D. Chakraborty ^{ba}, K.M. Chan ^{bs}, A. Chandra ^{ac}, D. Chapin ^{by}, F. Charles ^s, E. Cheu ^{at}, D.K. Cho ^{bj}, S. Choi^{af}, B. Choudhary^{ab}, T. Christiansen^y, L. Christofek^{bf}, D. Claes^{bo}, B. Clément^s, C. Clément ^{ao}, Y. Coadou^e, M. Cooke^{cb}, W.E. Cooper ^{ay}, D. Coppage^{bf}, M. Corcoran^{cb}, M.-C. Cousinou^o, B. Cox^{as}, S. Crépé-Renaudinⁿ, D. Cutts^{by}, H. da Motta^b, A. Das^{bj}, M. Das^{bh}, B. Davies^{aq}, G. Davies^{ar}, G.A. Davis^{bb}, K. De^{bz}, P. de Jong^{ah}, S.J. de Jong^{ai}, E. De La Cruz-Burelo^{bl}, C. De Oliveira Martins^c, S. Dean^{as}, J.D. Degenhardt^{bl}, F. Déliot^r, M. Demarteau^{ay}, R. Demina^{bs}, P. Demine^r, D. Denisov^{ay}, S.P. Denisov^{am}, S. Desai^{bt}, H.T. Diehl^{ay}, M. Diesburg^{ay}, M. Doidge^{aq}, H. Dong^{bt}, S. Doulas^{bk}, L.V. Dudko^{al}, L. Duflot^p, S.R. Dugad^{ac}, A. Duperrin^o, J. Dyer^{bm}, A. Dyshkant^{ba}, M. Eads^{bo}, D. Edmunds^{bm}, T. Edwards^{as}, J. Ellison^{aw}, J. Elmsheuser^y, V.D. Elvira^{ay}, S. Eno^{bi}, P. Ermolov^{al}, J. Estrada^{ay}, H. Evans^{bc}, A. Evdokimov^{ak}, V.N. Evdokimov^{am}, J. Fast^{ay}, S.N. Fatakia^{bj}, L. Feligioni^{bj}, A.V. Ferapontov^{am}, T. Ferbel^{bs}, F. Fiedler^y, F. Filthaut^{ai}, W. Fisher^{ay}, H.E. Fisk^{ay}, I. Fleck^w, M. Fortner^{ba}, H. Fox^w, S. Fu^{ay}, S. Fuess^{ay}, T. Gadfort^{cd}, C.F. Galea^{ai}, E. Gallas^{ay}, E. Galyaev^{bd}, C. Garcia^{bs}, A. Garcia-Bellido^{cd}, J. Gardner^{bf}, V. Gavrilov^{ak}, A. Gay^s, P. Gay^m, D. Gelé^s, R. Gelhaus^{aw}, C.E. Gerber^{az}, Y. Gershtein^{ax}, D. Gillberg^e, G. Ginther^{bs}, T. Golling^v, N. Gollub^{ao}, B. Gómez^h, K. Gounder^{ay}, A. Goussiou^{bd}, P.D. Grannis^{bt}, S. Greder^c, H. Greenlee^{ay}, Z.D. Greenwood^{bh}, E.M. Gregores^d, G. Grenier^t, Ph. Gris^m, J.-F. Grivaz^p, S. Grünendahl^{ay}, M.W. Grünewald^{ad}, G. Gutierrez^{ay}, P. Gutierrez^{bw}, A. Haas^{br}, N.J. Hadley^{bi}, S. Hagopian^{ax}, J. Haley^{bp}, I. Hall^{bw}, R.E. Hall^{av}, C. Han^{bl},

L. Han^g, K. Hanagaki^{ay}, K. Harder^{bg}, A. Harel^z, R. Harrington^{bk}, J.M. Hauptman^{be}, R. Hauser^{bm}, J. Hays^{bb}, T. Hebbeker^u, D. Hedin^{ba}, J.G. Hegeman^{ah}, J.M. Heinmiller^{az}, A.P. Heinson^{aw}, U. Heintz^{bj}, C. Hensel^{bf}, G. Hesketh^{bk}, M.D. Hildreth^{bd}, R. Hirosky^{cc}, J.D. Hobbs^{bt}, B. Hoeneisen¹, M. Hohlfeld^p, S.J. Hong^{ae}, R. Hooper^{by}, P. Houben^{ah}, Y. Hu^{bt}, J. Huang^{bc}, V. Hynekⁱ, I. Iashvili^{bq}, R. Illingworth^{ay}, A.S. Ito^{ay}, S. Jabeen^{bf}, M. Jaffré^p, S. Jain^{bw}, V. Jain^{bu}, K. Jakobs^w, C. Jarvis^{bi}, A. Jenkins^{ar}, R. Jesik^{ar}, K. Johns^{at}, C. Johnson^{br}, M. Johnson^{ay}, A. Jonckheere^{ay}, P. Jonsson^{ar}, A. Juste^{ay}, D. Käfer^u, S. Kahn^{bu}, E. Kajfasz^o, A.M. Kalinin^{aj}, J.M. Kalk^{bh}, J.R. Kalk^{bm}, D. Karmanov^{al}, J. Kasper^{bj}, I. Katsanos^{br}, D. Kau^{ax}, R. Kaur^{aa}, R. Kehoe^{ca}, S. Kermiche^o, S. Kesisoglou^{by}, A. Khanov^{bx}, A. Kharchilava^{bq}, Y.M. Kharzheev^{aj}, D. Khatidze^{br}, H. Kim^{bz}, T.J. Kim^{ae}, B. Klima^{ay}, J.M. Kohli^{aa}, J.-P. Konrath^w, M. Kopal^{bw}, V.M. Korablev^{am}, J. Kotcher^{bu}, B. Kothari^{br}, A. Koubarovsky^{al}, A.V. Kozelov^{am}, J. Kozminski^{bm}, A. Kryemadhi^{cc}, S. Krzywdzinski^{ay}, A. Kumar^{bq}, S. Kunori^{bi}, A. Kupco^k, T. Kurča^t, J. Kvitaⁱ, S. Lager ^{ao}, S. Lammers ^{br}, G. Landsberg ^{by}, J. Lazoflores ^{ax}, A.-C. Le Bihan^s, P. Lebrun^t, W.M. Lee^{ax}, A. Leflat^{al}, F. Lehner^{ap}, C. Leonidopoulos^{br}, V. Lesne^m, J. Leveque^{at}, P. Lewis^{ar}, J. Li^{bz}, Q.Z. Li^{ay}, J.G.R. Lima^{ba}, D. Lincoln^{ay}, S.L. Linn^{ax}, J. Linnemann^{bm}, V.V. Lipaev^{am}, R. Lipton^{ay}, L. Lobo^{ar}, A. Lobodenko^{an}, M. Lokajicek^k, A. Lounis^s, P. Love^{aq}, H.J. Lubatti^{cd}, L. Lueking^{ay}, M. Lynker^{bd}, A.L. Lyon^{ay}, A.K.A. Maciel^b, R.J. Madaras^{au}, P. Mättig^z, C. Magass^u, A. Magerkurth^{bl}, A.-M. Magnanⁿ, N. Makovec^p, P.K. Mal^{bd}, H.B. Malbouisson^c, S. Malik^{bo}, V.L. Malyshev^{aj}, H.S. Mao^f, Y. Maravin^{bg}, M. Martens^{ay}, S.E.K. Mattingly^{by}, R. McCarthy^{bt}, R. McCroskey^{at}, D. Meder^x, A. Melnitchouk^{bn}, A. Mendes^o, L. Mendoza^h, M. Merkin^{al}, K.W. Merritt^{ay}, A. Meyer^u, J. Meyer^v, M. Michaut^r, H. Miettinen^{cb}, J. Mitrevski^{br}, J. Molina^c, N.K. Mondal ac, J. Monk as, R.W. Moore e, T. Moulik bf, G.S. Muanza t, M. Mulders ay, L. Mundim c, Y.D. Mutaf^{bt}, E. Nagy^o, M. Naimuddin^{ab}, M. Narain^{bj}, N.A. Naumann^{ai}, H.A. Neal^{bl}, J.P. Negret^h, S. Nelson^{ax}, P. Neustroev^{an}, C. Noeding^w, A. Nomerotski^{ay}, S.F. Novaes^d, T. Nunnemann^y, E. Nurse as, V. O'Dell ay, D.C. O'Neil^e, G. Obrant an, V. Oguri^c, N. Oliveira^c, N. Oshima ay, G.J. Otero y Garzón^{az}, P. Padley^{cb}, N. Parashar^{ay,1}, S.K. Park^{ae}, J. Parsons^{br}, R. Partridge^{by}, N. Parua^{bt}, A. Patwa^{bu}, G. Pawloski^{cb}, P.M. Perea^{aw}, E. Perez^r, P. Pétroff^p, M. Petteni^{ar}, R. Piegaia^a, M.-A. Pleier^v, P.L.M. Podesta-Lerma^{ag}, V.M. Podstavkov^{ay}, Y. Pogorelov^{bd}, M.-E. Pol^b, A. Pompoš^{bw}, B.G. Pope^{bm}, W.L. Prado da Silva^c, H.B. Prosper^{ax}, S. Protopopescu^{bu}, J. Qian^{bl}, A. Quadt^v, B. Quinn^{bn}, K.J. Rani^{ac}, K. Ranjan^{ab}, P.A. Rapidis^{ay}, P.N. Ratoff^{aq}, S. Reucroft^{bk}, M. Rijssenbeek^{bt}, I. Ripp-Baudot^s, F. Rizatdinova^{bx}, S. Robinson^{ar}, R.F. Rodrigues^c, C. Royon^r, P. Rubinov^{ay}, R. Ruchti^{bd}, V.I. Rud^{al}, G. Sajotⁿ, A. Sánchez-Hernández^{ag}, M.P. Sanders^{bi}, A. Santoro^c, G. Savage^{ay}, L. Sawyer^{bh}, T. Scanlon^{ar}, D. Schaile^y, R.D. Schamberger^{bt}, Y. Scheglov^{an}, H. Schellman^{bb}, P. Schieferdecker^y, C. Schmitt^z, C. Schwanenberger^v, A. Schwartzman^{bp}, R. Schwienhorst^{bm}, S. Sengupta^{ax}, H. Severini^{bw}, E. Shabalina az, M. Shamim bg, V. Shary r, A.A. Shchukin am, W.D. Shephard bd, R.K. Shivpuri ab, D. Shpakov^{bk}, R.A. Sidwell^{bg}, V. Simak^j, V. Sirotenko^{ay}, P. Skubic^{bw}, P. Slattery^{bs}, R.P. Smith^{ay}, K. Smolek^j, G.R. Snow^{bo}, J. Snow^{bv}, S. Snyder^{bu}, S. Söldner-Rembold^{as}, X. Song^{ba}, L. Sonnenschein^q, A. Sopczak^{aq}, M. Sosebee^{bz}, K. Soustruznikⁱ, M. Souza^b, B. Spurlock^{bz}, J. Starkⁿ, J. Steele^{bh}, K. Stevenson^{bc}, V. Stolin^{ak}, A. Stone^{az}, D.A. Stoyanova^{am}, J. Strandberg^{ao}, M.A. Strang^{bq}, M. Strauss^{bw}, R. Ströhmer^y, D. Strom^{bb}, M. Strovink^{au}, L. Stutte^{ay}, S. Sumowidagdo ^{ax}, A. Sznajder^c, M. Talby^o, P. Tamburello^{at}, W. Taylor^e, P. Telford^{as}, J. Temple^{at}, B. Tiller^y, M. Titov^w, M. Tomoto^{ay}, T. Toole^{bi}, I. Torchiani^w, S. Towers^{aq}, T. Trefzger^x, S. Trincaz-Duvoid^q, D. Tsybychev^{bt}, B. Tuchming^r, C. Tully^{bp}, A.S. Turcot^{as}, P.M. Tuts^{br}, L. Uvarov^{an}, S. Uvarov^{an}, S. Uzunyan^{ba}, B. Vachon^e, P.J. van den Berg^{ah}, R. Van Kooten^{bc},

W.M. van Leeuwen ^{ah}, N. Varelas ^{az}, E.W. Varnes ^{at}, A. Vartapetian ^{bz}, I.A. Vasilyev ^{am}, M. Vaupel ^z, P. Verdier ^t, L.S. Vertogradov ^{aj}, M. Verzocchi ^{ay}, F. Villeneuve-Seguier ^{ar}, J.-R. Vlimant ^q, E. Von Toerne ^{bg}, M. Voutilainen ^{bo,2}, M. Vreeswijk ^{ah}, T. Vu Anh ^p, H.D. Wahl ^{ax}, L. Wang ^{bi},

J. Warchol^{bd}, G. Watts^{cd}, M. Wayne^{bd}, M. Weber^{ay}, H. Weerts^{bm}, N. Wermes^v, M. Wetstein^{bi}, A. White ^{bz}, V. White ^{ay}, D. Wicke ^{ay}, D.A. Wiingaarden ^{ai}, G.W. Wilson ^{bf}, S.J. Wimpenny ^{aw}, M. Wobisch^{ay}, J. Womersley^{ay}, D.R. Wood^{bk}, T.R. Wyatt^{as}, Y. Xie^{by}, Q. Xu^{bl}, N. Xuan^{bd}, S. Yacoob^{bb}, R. Yamada^{ay}, M. Yan^{bi}, T. Yasuda^{ay}, Y.A. Yatsunenko^{aj}, Y. Yen^z, K. Yip^{bu}, H.D. Yoo^{by}, S.W. Youn^{bb}, J. Yu^{bz}, A. Yurkewicz^{bt}, A. Zabi^p, A. Zatserklyaniy^{ba}, C. Zeitnitz^x, D. Zhang^{ay}, T. Zhao^{cd}, Z. Zhao^{bl}, B. Zhou^{bl}, J. Zhu^{bt}, M. Zielinski^{bs}, D. Zieminska^{bc}, A. Zieminski^{bc}, V. Zutshi^{ba}, E.G. Zverev^{al} ^a Universidad de Buenos Aires, Buenos Aires, Argentina ^b LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil ^c Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ^d Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil e University of Alberta, Edmonton, Alberta, Canada, Simon Fraser University, Burnaby, British Columbia, Canada, York University, Toronto, Ontario, Canada, and McGill University, Montreal, Quebec, Canada ^f Institute of High Energy Physics, Beijing, People's Republic of China ^g University of Science and Technology of China, Hefei, People's Republic of China ^h Universidad de los Andes, Bogotá, Colombia ⁱ Center for Particle Physics, Charles University, Prague, Czech Republic ^j Czech Technical University, Prague, Czech Republic ^k Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic ¹ Universidad San Francisco de Quito, Quito, Ecuador ^m Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France ⁿ Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France ^o CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France ^p IN2P3-CNRS, Laboratoire de l'Accélérateur Linéaire, Orsay, France ⁹ LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France ^r DAPNIA/Service de Physique des Particules, CEA, Saclay, France ⁸ IReS, IN2P3-CNRS, Université Louis Pasteur, Strasbourg, France, and Université de Haute Alsace, Mulhouse, France ^t Institut de Physique Nucléaire de Lyon, IN2P3-CNRS, Université Claude Bernard, Villeurbanne, France ^u III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany ^v Physikalisches Institut, Universität Bonn, Bonn, Germanv ^w Physikalisches Institut, Universität Freiburg, Freiburg, Germany ^x Institut für Physik, Universität Mainz, Mainz, Germany ^y Ludwig-Maximilians-Universität München, München, Germany ^z Fachbereich Physik, University of Wuppertal, Wuppertal, Germany ^{aa} Panjab University, Chandigarh, India ^{ab} Delhi University, Delhi, India ac Tata Institute of Fundamental Research, Mumbai, India ad University College Dublin, Dublin, Ireland ae Korea Detector Laboratory, Korea University, Seoul, Republic of Korea ^{af} SungKyunKwan University, Suwon, Republic of Korea ag CINVESTAV, Mexico City, Mexico ^{ah} FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands ^{ai} Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands aj Joint Institute for Nuclear Research, Dubna, Russia ak Institute for Theoretical and Experimental Physics, Moscow, Russia ^{al} Moscow State University, Moscow, Russia ^{am} Institute for High Energy Physics, Protvino, Russia an Petersburg Nuclear Physics Institute, St. Petersburg, Russia ^{ao} Lund University, Lund, Sweden, Royal Institute of Technology and Stockholm University, Stockholm, Sweden, and Uppsala University, Uppsala, Sweden ap Physik Institut der Universität Zürich, Zürich, Switzerland ^{aq} Lancaster University, Lancaster, United Kingdom ar Imperial College, London, United Kingdom as University of Manchester, Manchester, United Kingdom at University of Arizona, Tucson, AZ 85721, USA ^{au} Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA av California State University, Fresno, CA 93740, USA aw University of California, Riverside, CA 92521, USA ax Florida State University, Tallahassee, FL 32306, USA

ay Fermi National Accelerator Laboratory, Batavia, IL 60510, USA az University of Illinois at Chicago, Chicago, IL 60607, USA ba Northern Illinois University, DeKalb, IL 60115, USA bb Northwestern University, Evanston, IL 60208, USA bc Indiana University, Bloomington, IN 47405, USA bd University of Notre Dame, Notre Dame, IN 46556, USA be Iowa State University, Ames, IA 50011, USA bf University of Kansas, Lawrence, KS 66045, USA bg Kansas State University, Manhattan, KS 66506, USA ^{bh} Louisiana Tech University, Ruston, LNA 71272, USA bi University of Maryland, College Park, MD 20742, USA bj Boston University, Boston, MA 02215, USA bk Northeastern University, Boston, MA 02115, USA bl University of Michigan, Ann Arbor, MI 48109, USA bm Michigan State University, East Lansing, MI 48824, USA ^{bn} University of Mississippi, University, MS 38677, USA bo University of Nebraska, Lincoln, NE 68588, USA bp Princeton University, Princeton, NJ 08544, USA ^{bq} State University of New York, Buffalo, NY 14260, USA br Columbia University, New York, NY 10027, USA bs University of Rochester, Rochester, NY 14627, USA bt State University of New York, Stony Brook, NY 11794, USA ^{bu} Brookhaven National Laboratory, Upton, NY 11973, USA bv Langston University, Langston, OK 73050, USA bw University of Oklahoma, Norman, OK 73019, USA bx Oklahoma State University, Stillwater, OK 74078, USA by Brown University, Providence, RI 02912, USA bz University of Texas, Arlington, TX 76019, USA ca Southern Methodist University, Dallas, TX 75275, USA cb Rice University, Houston, TX 77005, USA ^{cc} University of Virginia, Charlottesville, VA 22901, USA ^{cd} University of Washington, Seattle, WA 98195, USA Received 29 November 2005; accepted 13 April 2006 Available online 5 May 2006

Editor: M. Doser

Abstract

The cross section for the inclusive production of isolated photons has been measured in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV with the DØ detector at the Fermilab Tevatron Collider. The photons span transverse momenta 23 to 300 GeV and have pseudorapidity $|\eta| < 0.9$. The cross section is compared with the results from two next-to-leading order perturbative QCD calculations. The theoretical predictions agree with the measurement within uncertainties.

© 2006 Elsevier B.V. All rights reserved.

PACS: 13.85.Qk; 12.38.Qk

Photons originating in the hard interaction between two partons are typically produced in hadron collisions via quark– gluon Compton scattering or quark–anti-quark annihilation [1–4]. Studies of these direct photons with large transverse momenta, p_T^{γ} , provide precision tests of perturbative QCD (pQCD) as well as information on the distribution of partons within protons, particularly the gluon. These data were, in the past, used in global fits of parton distributions functions (PDFs) and complement analyses of deep inelastic scattering, Drell–Yan pair production, and jet production [5]. Photons from energetic π^0 and η mesons are the main background to direct photon production especially at small p_T^{γ} [6]. Since these mesons are produced inside jets, their contribution can be suppressed with respect to direct photons by requiring the photon be isolated from other particles. Isolated electrons from the electroweak production of W and Z bosons also contribute to the background at high p_T^{γ} . Previous measurements of photon production at hadron colliders successfully used these isolation techniques to extract the photon signal [7–13].

We present, in this Letter, a measurement of the cross section for the inclusive production of isolated photons with pseudorapidity $|\eta| < 0.9$ in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV. (Pseudorapidity is defined as $\eta = -\ln \tan(\theta/2)$, where θ is the polar

^{*} Corresponding author.

E-mail address: bandurin@fnal.gov (D.V. Bandurin).

¹ Visitor from Purdue University Calumet, Hammond, IN, USA.

² Visitor from Helsinki Institute of Physics, Helsinki, Finland.

155

angle with respect to the proton beam direction.) The data sample corresponds to an integrated luminosity $L = 326 \pm 21 \text{ pb}^{-1}$ [14] accumulated in 2002–2004 with the DØ detector [15] at the Fermilab Tevatron Collider. The primary tool for photon detection is the central part of a liquid-argon and uranium calorimeter covering $|\eta| < 1.1$. Two additional calorimeters, housed in separate cryostats, extend the coverage to $|\eta| < 4.2$ [16]. The electromagnetic section of the central calorimeter (EM) is segmented longitudinally into four layers (EM1-EM4) of 2, 2, 7, and 10 radiation lengths, respectively, and transversely into cells in η and azimuthal angle, $\Delta \eta \times \Delta \phi = 0.1 \times 0.1$ (0.05×0.05) in the EM3 layer at the electromagnetic shower maximum), yielding a good angular resolution for photons and electrons. The calorimeter surrounds a preshower detector and a tracking system which consists of silicon microstrip and scintillating fiber trackers (0.3 radiation lengths) located within a 2 T solenoidal magnet. The total amount of material between the interaction point and the first active layer of the calorimeter is equivalent to approximately 3.5-4.5 radiation lengths (increasing with $|\eta|$). The position and width of the Z boson mass peak were used to determine the EM calorimeter calibration factors and the EM energy resolution [17].

Photon candidates were formed from clusters of calorimeter cells within a cone of radius $\mathcal{R} = \sqrt{(\Delta \eta)^2 + (\Delta \phi)^2} = 0.4$; the energy was then recalculated from the inner core with $\mathcal{R} = 0.2$. Candidates were selected if there was significant energy in the EM calorimeter layers (> 95%), and the probability to have a matched track was less than 0.1%, and they satisfied the isolation requirement $(E_{\text{total}}(0.4) - E_{\text{EM}}(0.2))/E_{\text{EM}}(0.2) < 0.10$, where $E_{\text{total}}(0.4)$ is the total energy in a cone with $\mathcal{R} = 0.4$ and $E_{\rm EM}(0.2)$ is the EM energy within $\mathcal{R} = 0.2$. Photon candidates with energy measurements biased by calorimeter module boundaries and structures were removed from consideration; the geometric acceptance was $A = (84.2 \pm 1.5)\%$. Potential backgrounds from cosmic rays and leptonic W boson decays were suppressed by requiring the missing transverse energy, calculated from the vector sum of the transverse energies of calorimeter cells, to be less than $0.7 p_T^{\gamma}$. The efficiency for the above requirements was estimated with direct photons generated by PYTHIA [18]. Events were processed with the GEANT detector simulation package and overlaid with detector noise and minimum bias interactions [15]. The efficiency (excluding acceptance) rose from $(82 \pm 5)\%$ at $p_T^{\gamma} \approx 24$ GeV to a plateau of $(92 \pm 3)\%$ at $p_T^{\gamma} > 110$ GeV. We used $Z \rightarrow e^+e^$ events [17], due to the similarity between electron- and photoninitiated showers, to verify the selection efficiencies estimated with the Monte Carlo simulation (MC). The photon sample was acquired with a three-level trigger system that relied on hardware signals from the calorimeter and fast, software-based, photon reconstruction. The trigger was $(71 \pm 9)\%$ efficient for photon candidates with $p_T^{\gamma} \approx 24$ GeV, $(93 \pm 2)\%$ at $p_T^{\gamma} \approx 32$ GeV and greater than 98% for $p_T^{\gamma} > 40$ GeV. Every event was required to have a vertex, reconstructed with at least three tracks, within 50 cm of the nominal center of the detector along the beam axis; the efficiency for this requirement ranged from $(90.0 \pm 0.3)\%$ to $(95.3 \pm 0.1)\%$ as a function of instantaneous luminosity.

Four variables were used to further suppress the background: the number of EM1 cells with energy greater than 400 MeV within $\mathcal{R} < 0.2$ and within $0.2 < \mathcal{R} < 0.4$, the scalar sum of the transverse momenta of tracks within $0.05 < \mathcal{R} < 0.4$, and the energy-weighted cluster width in the finely-segmented EM3 layer. Area-normalized distributions of these four variables in the signal and background MC, after application of the main selection criteria, are shown in Fig. 1 for the $44 < p_T^{\gamma} < 50 \text{ GeV}$ interval. These variables were input to an artificial neural network (NN), built with the JETNET package [19], to suppress background and to estimate the purity of the resulting photon sample. The NN was trained to discriminate between direct photons and background events. The background events, produced with QCD and electroweak processes in PYTHIA, were preselected with loose criteria to increase statistics and to exclude high-momentum bremsstrahlung photons produced from partons. The resulting NN output, O_{NN}, peaks at unity for signal events and at zero for background events. Events with $O_{\rm NN} > 0.5$ were considered in this analysis, yielding a high photon selection efficiency of $(93.7 \pm 0.2)\%$ and good background rejection. The NN was tested in MC and data using electrons from Z boson decays; the resulting $O_{\rm NN}$ distributions are shown in Fig. 2. The systematic uncertainty on the signal efficiency for the $O_{\rm NN}$ requirement, estimated with electrons from the Z boson samples, is 2.4%.

The photon purity (\mathcal{P}) , defined as the ratio of signal to signal plus background, was determined statistically for each p_T^{γ} bin. Distributions of the number of events as a function of $O_{\rm NN}$ are shown for data and MC in Fig. 3 for the $44 < p_T^{\gamma} < 50 \text{ GeV}$ interval. The MC signal and background events in this figure were weighted by the fractions that resulted from the fit of the normalized linear combination of the MC events to data. The fit was performed with the CERNLIB fitting package HMCMLL [20]. The data are well described by the sum of MC signal and background samples, especially for events with $O_{\rm NN} > 0.5$. Photon purities are shown in Fig. 4 as a function of p_T^{γ} . The purity uncertainty is dominated by MC statistics at low p_T^{γ} and data statistics at high p_T^{γ} . Systematic uncertainties were estimated by using two alternate fitting functions and by varying the number of bins used in the HMCMLL fits. The PYTHIA fragmentation model was an additional source of systematic uncertainty. This uncertainty was estimated by varying the production rate of π^0 , η , K_s^0 , and ω mesons by $\pm 50\%$ [21] resulting in an uncertainty of 7.5% at $p_T^{\gamma} \approx 24$ GeV, 2% at $p_T^{\gamma} \approx 50$ GeV, and 1% for $p_T^{\gamma} > 70$ GeV.

The isolated-photon cross section is measured using the following definition:

$$\frac{d^2\sigma}{dp_T\,d\eta} = \frac{N\mathcal{P}U}{L\Delta p_T^{\gamma}\Delta\eta A\epsilon},\tag{1}$$

where N is the number of photon candidates, ϵ is the combined efficiency for the selection criteria described above, and Δp_T^{γ} and $\Delta \eta$ are the bin sizes. The factor U corrects the cross section for the effects of the finite resolution of the calorimeter. This unsmearing was performed, as a function of p_T^{γ} , by iteratively fitting the convolution of an ansatz function with an energy resolution function. The uncertainty in this correction

Fig. 1. Area-normalized distributions of the four input variables to the NN, described in text, for the $44 < p_T^{\gamma} < 50$ GeV interval in MC signal (\triangle , solid line) and background (\circ , dashed line).

Fig. 2. Normalized distributions of NN output ($O_{\rm NN}$) in $Z \rightarrow e^+e^-$ events for data (•) and MC (•).

was estimated using two different ansatz functions and included the uncertainty in the energy resolution. An additional correction was applied to p_T^{γ} for the difference in the energy deposited in the material upstream of the calorimeter between electrons (used for the energy calibration) and photons. This correction to p_T^{γ} was approximately 1.9% at 20 GeV, 1.0% at 40 GeV, and less than 0.3% for $p_T^{\gamma} > 70$ GeV. The measured cross section, together with statistical and systematic uncertainties, is presented in Fig. 5 and Table 1. (The data points are plotted at the p_T value for which a smooth function describing the cross section is equal to the average cross section in the

Fig. 3. Distribution of the number of events in data (•) as a function of the NN output $(O_{\rm NN})$ for $44 < p_T^{\gamma} < 50$ GeV. The contributions from MC background (o) and summed MC signal and background (\Box) are also shown. The MC points were weighted according to the fitted purity (only statistical uncertainties are shown).

bin [22].) Sources of systematic uncertainty include luminosity (6.5%), event vertex determination (3.6%–5.0%), energy calibration (9.6%–5.5%), the fragmentation model (7.3%–1.0%), photon conversions (3%), and the photon purity fit uncertainty (shown in Fig. 4) as well as statistical uncertainties on the determination of geometrical acceptance (1.5%), trigger efficiency (11%–1%), selection efficiency (5.4%–3.8%) and unsmearing (1.5%). The uncertainty ranges above are quoted with the un-

Fig. 4. Dependence of the photon purity on p_T^{γ} . The dashed line represents a fit to these points, the filled area corresponds to the statistical uncertainty band, and the solid lines to the total uncertainty band. The NN output in data was fit to the shapes of the MC signal and background samples.

Fig. 5. The inclusive cross section for the production of isolated photons as a function of p_T^{γ} . The results from the NLO pQCD calculation with JETPHOX are shown as solid line.

certainty at low p_T^{γ} first and the uncertainty at high p_T^{γ} second. Most of these systematic uncertainties have large (> 80%) binto-bin correlations in p_T^{γ} . Varying the choice of NN cut from 0.3 to 0.7 changed the measured cross section by less than 5%. The variation in the cross section was 4–6% for 50% changes in the isolation requirement.

Results from a next-to-leading order (NLO) pQCD calculation (JETPHOX [23,24]) are compared to our measured cross section in Fig. 5. These results were derived using the CTEQ6.1M [25] PDFs and the BFG [26] fragmentation functions (FFs). The renormalization, factorization, and fragmentation scales were chosen to be $\mu_R = \mu_F = \mu_f = p_T^{\gamma}$. Another NLO pQCD calculation [27], based on the small-cone approximation and utilizing different FFs [28], gave consistent results Table 1

The measured differential cross section for the production of isolated photons, averaged over $|\eta| < 0.9$, in bins of p_T^{γ} . $\langle p_T^{\gamma} \rangle$ is the average p_T^{γ} within each bin. The columns $\delta \sigma_{\text{syst}}$ and $\delta \sigma_{\text{syst}}$ represent the statistical and systematic uncertainties respectively. (Five events with $p_T^{\gamma} > 300$ GeV, including one with $p_T^{\gamma} = 442$ GeV, were not considered in this analysis.)

p_T^{γ} (GeV)	$\langle p_T^{\gamma} \rangle$ (GeV)	$d^2\sigma/dp_T^{\gamma}d\eta$ (pb/GeV)	$\delta \sigma_{\text{stat}}$ (%)	$\delta\sigma_{\rm syst}$ (%)
23_25	23.9	$\frac{4.14 \times 10^2}{4.14 \times 10^2}$	0.1	23
25-20	26.9	2.21×10^2	0.1	19
30-34	31.7	1.01×10^{2}	0.2	16
34–39	36.0	5.37×10^{1}	0.2	15
39-44	41.1	2.88×10^{1}	0.3	14
44-50	46.5	1.58×10^{1}	0.4	13
50-60	53.8	7.90×10^{0}	0.4	13
60–70	63.9	3.39×10^{0}	0.6	13
70-80	74.1	1.68×10^{0}	0.9	12
80–90	84.1	9.34×10^{-1}	1.3	12
90-110	97.2	4.38×10^{-1}	1.4	12
110-130	118	1.66×10^{-1}	2.3	12
130-150	138	7.61×10^{-2}	3.5	13
150-170	158	3.20×10^{-2}	5.6	13
170-200	181	1.59×10^{-2}	6.5	14
200-230	212	7.36×10^{-3}	9.8	14
230-300	256	1.81×10^{-3}	13	15

Fig. 6. The ratio of the measured cross section to the theoretical predictions from JETPHOX. The full vertical lines correspond to the overall uncertainty while the internal line indicates just the statistical uncertainty. Dashed lines represents the change in the cross section when varying the theoretical scales by factors of two. The shaded region indicates the uncertainty in the cross section estimated with CTEQ6.1 PDFs.

(within 4%). As shown in Fig. 6, the calculation agrees, within uncertainties, with the measured cross section. The scale dependence in the NLO pQCD theory, estimated by varying scales by factors of two, are displayed in Fig. 6 as dashed lines. The span of these results is comparable to the overall uncertainty in the cross section measurement. The filled area in Fig. 6 represents the uncertainty associated with the CTEQ6.1M PDFs. The central values of the predictions change by less than 7% when the PDFs are replaced by MRST2004 [29] or Alekhin2004 [30].

The calculation is also sensitive to the implementation of the isolation requirements including the hadronic fraction in the $\mathcal{R} = 0.2$ cone around the photon. The variation in the predicted cross section for 50% changes in the cut values for these criteria was found to be less than 3% [31]. The difference in shape between data and NLO pQCD at low p_T^{γ} in Fig. 6 is difficult to interpret due to the large correlated systematic uncertainties. NLO pQCD is consistent with data within uncertainties, however, results from calculations enhanced for soft-gluon contributions [6,32,33] also provide reasonable descriptions of the data.

In conclusion, we have measured the cross section for the production of isolated photons with $|\eta| < 0.9$ produced in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV over a wide range in p_T^{γ} , $23 < p_T^{\gamma} < 300$ GeV. This extends previous measurements in this energy regime [9–13] to significantly higher values of p_T^{γ} . Results from NLO pQCD calculations agree with the measurement within uncertainties.

Acknowledgements

We thank W. Vogelsang, J.P. Guillet, E. Pilon, and M. Werlen for their assistance with theoretical calculations. We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUNDUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CONICET and UBACyT (Argentina); FOM (The Netherlands); PPARC (United Kingdom); MSMT (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); Research Corporation, Alexander von Humboldt Foundation, and the Marie Curie Program.

References

[1] J.F. Owens, Rev. Mod. Phys. 59 (1987) 465.

- [2] P. Aurenche, et al., Phys. Lett. B 140 (1984) 87.
- [3] E.L. Berger, J.-w. Qiu, Phys. Lett. B 248 (1990) 371.
- [4] U. Baur, et al., hep-ph/0005226.
- [5] H.L. Lai, et al., Phys. Rev. D 55 (1997) 1280;
- A.D. Martin, et al., Eur. Phys. J. C 4 (1998) 463.[6] L. Apanasevich, et al., Phys. Rev. D 63 (2001) 014009.
- [7] C. Albajar, et al., UA1 Collaboration, Phys. Lett. B 209 (1988) 385.
- [8] J. Alitti, et al., UA2 Collaboration, Phys. Lett. B 288 (1992) 386.
- [9] F. Abe, et al., CDF Collaboration, Phys. Rev. Lett. 73 (1994) 2662.
- [10] B. Abbott, et al., DØ Collaboration, Phys. Rev. Lett. 84 (2000) 2786.
- [11] V.M. Abazov, et al., DØ Collaboration, Phys. Rev. Lett. 87 (2001) 251805.
- [12] D. Acosta, et al., CDF Collaboration, Phys. Rev. D 65 (2002) 112003.
- [13] D. Acosta, et al., CDF Collaboration, Phys. Rev. D 70 (2004) 074008.
- [14] T. Edwards, et al., DØ Collaboration, FERMILAB-TM-2278-E.
- [15] V.M. Abazov, et al., DØ Collaboration, Nucl. Instrum. Methods Phys. Res. A (2005) submitted for publication, physics/0507191.
- [16] S. Abachi, et al., DØ Collaboration, Nucl. Instrum. Methods A 338 (1994) 185.
- [17] V.M. Abazov, et al., DØ Collaboration, Phys. Rev. Lett. 95 (2005) 051802.
- [18] T. Sjöstrand, et al., Comput. Phys. Commun. 135 (2001) 238, PYTHIA v6.202.
- [19] C. Peterson, T. Rognvaldsson, L. Lönnblad, Comput. Phys. Commun. 81 (1994) 185.
- [20] R.J. Barlow, C. Beeston, Comput. Phys. Commun. 77 (1993) 219.
- [21] T. Sjöstrand, private communication;T. Binoth, et al., Eur. Phys. J. C 4 (2002) 7.
- [22] G.D. Lafferty, T.R. Wyatt, Nucl. Instrum. Methods A 355 (1995) 541.
- [23] T. Binoth, et al., Eur. Phys. J. C 16 (2000) 311.
- [24] S. Catani, et al., JHEP 0205 (2002) 028.
- [25] D. Stump, et al., JHEP 0310 (2003) 046.
- [26] L. Bourhis, M. Fontannaz, J.P. Guillet, Eur. Phys. J. C 2 (1998) 529.
- [27] L.E. Gordon, W. Vogelsang, Phys. Rev. D 48 (1993) 3136;
- L.E. Gordon, W. Vogelsang, Phys. Rev. D 50 (1994) 1901. [28] M. Gluck, E. Reva, A. Vogt, Phys. Rev. D 48 (1993) 116;
- M. Gluck, E. Reya, A. Vogt, Phys. Rev. D 51 (1995) 1427, Erratum.
- [29] A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Phys. Lett. B 604 (2004) 61.
- [30] S. Alekhin, Phys. Rev. D 68 (2003) 014002.
- [31] W. Vogelsang, private communication.
- [32] E. Laenen, G. Oderda, G. Sterman, Phys. Lett. B 438 (1998) 173.
- [33] A. Lipatov, N. Zotov, hep-ph/0507243.

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 658 (2008) 285-289

www.elsevier.com/locate/physletb

Erratum

Erratum to: "Measurement of the isolated photon cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV" [Phys. Lett. B 639 (2006) 151]

DØ Collaboration

V.M. Abazov^{ai}, B. Abbott^{bw}, M. Abolins^{bm}, B.S. Acharya^{ab}, M. Adams^{ay}, T. Adams^{aw}, E. Aguilo^e, S.H. Ahn^{ad}, M. Ahsan^{bg}, G.D. Alexeev^{ai}, G. Alkhazov^{am}, A. Alton^{bl}, G. Alverson^{bk}, G.A. Alves^b, M. Anastasoaie^{ah}, L.S. Ancu^{ah}, T. Andeen^{ba}, S. Anderson^{as}, B. Andrieu^p, M.S. Anzelc^{ba}, Y. Arnoud^m, M. Arov^{bh}, M. Arthaud^q, A. Askew^{aw}, B. Åsman^{an}, A.C.S. Assis Jesus^c, O. Atramentov^{aw}, C. Autermann^t, C. Avila^g, C. Ay^w, F. Badaud¹, A. Baden^{bi}, L. Bagby^{az}, B. Baldin ^{ax}, D.V. Bandurin ^{bg,*}, S. Banerjee ^{ab}, P. Banerjee ^{ab}, E. Barberis ^{bk}, A.-F. Barfuss ⁿ, P. Bargassa ^{cb}, P. Baringer ^{bf}, J. Barreto ^b, J.F. Bartlett ^{ax}, U. Bassler ^p, D. Bauer ^{aq}, S. Beale ^e, A. Bean^{bf}, M. Begalli^c, M. Begel^{bs}, C. Belanger-Champagne^{an}, L. Bellantoni^{ax}, A. Bellavance^{ax}, J.A. Benitez^{bm}, S.B. Beri^z, G. Bernardi^p, R. Bernhard^v, L. Berntzonⁿ, I. Bertram^{ap}, M. Besançon^q, R. Beuselinck ^{aq}, V.A. Bezzubov ^{al}, P.C. Bhat ^{ax}, V. Bhatnagar ^z, C. Biscarat ^s, G. Blazey ^{az},
F. Blekman ^{aq}, S. Blessing ^{aw}, D. Bloch ^r, K. Bloom ^{bo}, A. Boehnlein ^{ax}, D. Boline ^{bj}, T.A. Bolton ^{bg}, G. Borissov^{ap}, K. Bos^{ag}, T. Bose^{by}, A. Brandt^{bz}, R. Brock^{bm}, G. Brooijmans^{br}, A. Bross^{ax}, D. Brown^{bz}, N.J. Buchanan^{aw}, D. Buchholz^{ba}, M. Buehler^{cc}, V. Buescher^u, S. Burdin^{ap}, S. Burke^{as}, T.H. Burnett^{cd}, C.P. Buszello^{aq}, J.M. Butler^{bj}, P. Calfayan^x, S. Calvetⁿ, J. Cammin^{bs}, S. Caron^{ag}, W. Carvalho^c, B.C.K. Casey^{by}, N.M. Cason^{bc}, H. Castilla-Valdez^{af}, S. Chakrabarti^q, D. Chakraborty ^{az}, K.M. Chan ^{bc}, K. Chan ^e, A. Chandra ^{av}, F. Charles ^r, E. Cheu ^{as}, F. Chevallier ^m, D.K. Cho^{bj}, S. Choi^{ae}, B. Choudhary^{aa}, L. Christofek^{by}, T. Christoudias^{aq}, S. Cihangir^{ax}, D. Claes^{bo}, C. Clément^{an}, B. Clément^r, Y. Coadou^e, M. Cooke^{cb}, W.E. Cooper^{ax}, M. Corcoran^{cb}, F. Couderc^q, M.-C. Cousinouⁿ, S. Crépé-Renaudin^m, D. Cutts^{by}, M. Ćwiok^{ac}, H. da Motta^b, A. Das ^{bj}, G. Davies ^{aq}, K. De ^{bz}, S.J. de Jong ^{ah}, P. de Jong ^{ag}, E. De La Cruz-Burelo ^{bl}, C. De Oliveira Martins^c, J.D. Degenhardt^{bl}, F. Déliot^q, M. Demarteau^{ax}, R. Demina^{bs}, D. Denisov ^{ax}, S.P. Denisov ^{al}, S. Desai ^{ax}, H.T. Diehl ^{ax}, M. Diesburg ^{ax}, A. Dominguez ^{bo}, H. Dong ^{bt}, L.V. Dudko ^{ak}, L. Duflot ^o, S.R. Dugad ^{ab}, D. Duggan ^{aw}, A. Duperrin ⁿ, J. Dyer ^{bm}, A. Dyshkant ^{az}, M. Eads ^{bo}, D. Edmunds ^{bm}, J. Ellison ^{av}, V.D. Elvira ^{ax}, Y. Enari ^{by}, S. Eno ^{bi}, P. Ermolov ^{ak}, H. Evans ^{bb}, A. Evdokimov ^{bu}, V.N. Evdokimov ^{al}, A.V. Ferapontov ^{bg}, T. Ferbel ^{bs}, F. Fiedler ^x, E. Ellison ^{av}, M. E. L. S. Elvira ^{ax}, M. E. Evans ^{bb}, A. Evdokimov ^{bu}, V.N. Evdokimov ^{al}, A.V. Ferapontov ^{bg}, T. Ferbel ^{bs}, F. Fiedler ^x, E. Ellison ^{av}, M. E. L. S. Elvira ^{ax}, M. E. Elvira ^{ax}, M. E. Elvira ^{ax}, M. E. Elvira ^{ax}, M. E. Elvira ^{bb}, S. Eno ^{bi}, P. Ermolov ^{ak}, E. Elvira ^{bb}, A. Evdokimov ^{bu}, V.N. Evdokimov ^{al}, A.V. Ferapontov ^{bg}, T. Ferbel ^{bs}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, E. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, F. Fiedler ^x, E. Elvira ^x, F. Fiedler ^x, F. Fie F. Filthaut^{ah}, W. Fisher^{ax}, H.E. Fisk^{ax}, M. Ford^{ar}, M. Fortner^{az}, H. Fox^v, S. Fu^{ax}, S. Fuess^{ax}, T. Gadfort^{cd}, C.F. Galea^{ah}, E. Gallas^{ax}, E. Galyaev^{bc}, C. Garcia^{bs}, A. Garcia-Bellido^{cd}, V. Gavrilov^{aj}, P. Gay¹, W. Geist^r, D. Gelé^r, C.E. Gerber^{ay}, Y. Gershtein^{aw}, D. Gillberg^e, G. Ginther^{bs}, N. Gollub^{an}, B. Gómez^g, A. Goussiou^{bc}, P.D. Grannis^{bt}, H. Greenlee^{ax}, Z.D. Greenwood ^{bh}, E.M. Gregores ^d, G. Grenier ^s, Ph. Gris¹, J.-F. Grivaz ^o, A. Grohsjean ^x, S. Grünendahl^{ax}, M.W. Grünewald^{ac}, J. Guo^{bt}, F. Guo^{bt}, P. Gutierrez^{bw}, G. Gutierrez^{ax}, A. Haas^{br}, N.J. Hadley^{bi}, P. Haefner^x, S. Hagopian^{aw}, J. Haley^{bp}, I. Hall^{bw}, R.E. Hall^{au}, L. Han^f,

K. Hanagaki^{ax}, P. Hansson^{an}, K. Harder^{ar}, A. Harel^{bs}, R. Harrington^{bk}, J.M. Hauptman^{be}, R. Hauser^{bm}, J. Hays^{aq}, T. Hebbeker^t, D. Hedin^{az}, J.G. Hegeman^{ag}, J.M. Heinmiller^{ay}, A.P. Heinson^{av}, U. Heintz^{bj}, C. Hensel^{bf}, K. Herner^{bt}, G. Hesketh^{bk}, M.D. Hildreth^{bc}, R. Hirosky^{cc}, J.D. Hobbs^{bt}, B. Hoeneisen^k, H. Hoeth^y, M. Hohlfeld^u, S.J. Hong^{ad}, R. Hooper^{by}, S. Hossain^{bw} P. Houben^{ag}, Y. Hu^{bt}, Z. Hubacekⁱ, V. Hynek^h, I. Iashvili^{bq}, R. Illingworth^{ax}, A.S. Ito^{ax}, S. Jabeen^{bj}, M. Jaffré^o, S. Jain^{bw}, K. Jakobs^v, C. Jarvis^{bi}, R. Jesik^{aq}, K. Johns^{as}, C. Johnson^{br}, M. Johnson^{ax}, A. Jonckheere^{ax}, P. Jonsson^{aq}, A. Juste^{ax}, D. Käfer^t, S. Kahn^{bu}, E. Kajfaszⁿ, A.M. Kalinin^{ai}, J.R. Kalk^{bm}, J.M. Kalk^{bh}, S. Kappler^t, D. Karmanov^{ak}, J. Kasper^{bj}, P. Kasper^{ax}, I. Katsanos^{br}, D. Kau^{aw}, R. Kaur^z, V. Kaushik^{bz}, R. Kehoe^{ca}, S. Kermicheⁿ, N. Khalatyan^{al}, A. Khanov^{bx}, A. Kharchilava^{bq}, Y.M. Kharzheev^{ai}, D. Khatidze^{br}, H. Kim^{ae}, T.J. Kim^{ad}, M.H. Kirby^{ah}, M. Kirsch^t, B. Klima^{ax}, J.M. Kohli^z, J.-P. Konrath^v, M. Kopal^{bw}, V.M. Korablev^{al}, B. Kothari^{br}, A.V. Kozelov^{al}, D. Krop^{bb}, A. Kryemadhi^{cc}, T. Kuhl^w, A. Kumar^{bq}, S. Kunori^{bi}, A. Kupco^j, T. Kurča^s, J. Kvita^h, F. Lacroix¹, D. Lam^{bc}, S. Lammers^{br}, G. Landsberg^{by}, J. Lazoflores^{aw}, P. Lebrun^s, W.M. Lee^{ax}, A. Leflat^{ak}, F. Lehner^{ao}, J. Lellouch^p, V. Lesne¹, J. Leveque^{as}, P. Lewis^{aq}, J. Li^{bz}, Q.Z. Li^{ax}, L. Li^{av}, S.M. Lietti^d, J.G.R. Lima^{az}, D. Lincoln^{ax}, J. Linnemann^{bm}, V.V. Lipaev^{al}, R. Lipton ^{ax}, Y. Liu^f, Z. Liu^e, L. Lobo ^{aq}, A. Lobodenko ^{am}, M. Lokajicek^j, A. Lounis^r, P. Love ^{ap}, H.J. Lubatti ^{cd}, A.L. Lyon ^{ax}, A.K.A. Maciel^b, D. Mackin ^{cb}, R.J. Madaras ^{at}, P. Mättig^y, C. Magass^t, A. Magerkurth^{bl}, N. Makovec^o, P.K. Mal^{bc}, H.B. Malbouisson^c, S. Malik^{bo}, V.L. Malyshev^{ai}, H.S. Mao^{ax}, Y. Maravin^{bg}, B. Martin^m, R. McCarthy^{bt}, A. Melnitchouk^{bn}, A. Mendesⁿ, L. Mendoza^g, P.G. Mercadante^d, M. Merkin^{ak}, K.W. Merritt^{ax}, J. Meyer^u, A. Meyer^t, M. Michaut^q, T. Millet^s, J. Mitrevski^{br}, J. Molina^c, R.K. Mommsen^{ar}, N.K. Mondal^{ab}, R.W. Moore^e, T. Moulik^{bf}, G.S. Muanza^s, M. Mulders^{ax}, M. Mulhearn^{br}, O. Mundal^u, L. Mundim^c, E. Nagyⁿ, M. Naimuddin^{ax}, M. Narain^{by}, N.A. Naumann^{ah}, H.A. Neal^{bl}, J.P. Negret^g, P. Neustroev^{am}, H. Nilsen^v, A. Nomerotski^{ax}, S.F. Novaes^d, T. Nunnemann^x, V. O'Dell^{ax}, D.C. O'Neil^e, G. Obrant^{am}, C. Ochando^o, D. Onoprienko^{bg}, N. Oshima^{ax}, J. Osta^{bc}, R. Otecⁱ, G.J. Otero y Garzón ^{ay}, M. Owen ^{ar}, P. Padley ^{cb}, M. Pangilinan ^{by}, N. Parashar ^{bd}, S.-J. Park ^{bs}, S.K. Park ^{ad}, J. Parsons ^{br}, R. Partridge ^{by}, N. Parua ^{bb}, A. Patwa ^{bu}, G. Pawloski ^{cb}, B. Penning ^v, P.M. Perea av, K. Peters ar, Y. Peters y, P. Pétroff o, M. Petteni aq, R. Piegaia a, J. Piper bm, M.-A. Pleier^u, P.L.M. Podesta-Lerma^{af}, V.M. Podstavkov^{ax}, Y. Pogorelov^{bc}, M.-E. Pol^b, P. Polozov^{aj}, A. Pompoš^{bw}, B.G. Pope^{bm}, A.V. Popov^{al}, C. Potter^e, W.L. Prado da Silva^c, H.B. Prosper^{aw}, S. Protopopescu^{bu}, J. Qian^{bl}, A. Quadt^u, B. Quinn^{bn}, A. Rakitine^{ap}, M.S. Rangel^b, K.J. Rani^{ab}, K. Ranjan^{aa}, P.N. Ratoff^{ap}, P. Renkel^{ca}, S. Reucroft^{bk}, P. Rich^{ar}, M. Rijssenbeek^{bt}, I. Ripp-Baudot^r, F. Rizatdinova^{bx}, S. Robinson^{aq}, R.F. Rodrigues^c, C. Royon^q, P. Rubinov^{ax}, R. Ruchti^{bc}, G. Safronov^{aj}, G. Sajot^m, A. Sánchez-Hernández^{af}, M.P. Sanders^p, A. Santoro^c, G. Savage^{ax}, L. Sawyer^{bh}, T. Scanlon^{aq}, D. Schaile^x, R.D. Schamberger^{bt}, Y. Scheglov^{am}, H. Schellman^{ba}, P. Schieferdecker^x, T. Schliephake^y, C. Schmitt^y, C. Schwanenberger^{ar}, A. Schwartzman^{bp}, R. Schwienhorst^{bm}, J. Sekaric^{aw}, S. Sengupta^{aw}, H. Severini^{bw}, E. Shabalina^{ay}, M. Shamim^{bg}, V. Shary^q, A.A. Shchukin^{al}, R.K. Shivpuri^{aa}, D. Shpakov^{ax}, V. Siccardi^r, V. Simakⁱ, V. Sirotenko^{ax}, P. Skubic^{bw}, P. Slattery^{bs}, D. Smirnov^{bc}, R.P. Smith^{ax}, J. Snow^{bv}, G.R. Snow^{bo}, S. Snyder^{bu}, S. Söldner-Rembold^{ar}, L. Sonnenschein^p, A. Sopczak^{ap}, M. Sosebee^{bz}, K. Soustruznik^h, M. Souza^b, B. Spurlock^{bz}, J. Stark^m, J. Steele^{bh}, V. Stolin^{aj}, A. Stone^{ay}, D.A. Stoyanova^{al}, J. Strandberg^{bl}, S. Strandberg^{an}, M.A. Strang^{bq}, M. Strauss^{bw}, E. Strauss^{bt}, R. Ströhmer^x, D. Strom^{ba}, M. Strovink^{at}, L. Stutte^{ax}, S. Sumowidagdo^{aw}, P. Svoisky^{bc}, A. Sznajder^c, M. Talbyⁿ, P. Tamburello^{as}, A. Tanasijczuk^a, W. Taylor^e, P. Telford^{ar}, J. Temple^{as}, B. Tiller^x, F. Tissandier¹, M. Titov^q, V.V. Tokmenin^{ai}, M. Tomoto^{ax}, T. Toole^{bi}, I. Torchiani^v,

T. Trefzger^w, D. Tsybychev^{bt}, B. Tuchming^q, C. Tully^{bp}, P.M. Tuts^{br}, R. Unalan^{bm}, S. Uvarov^{am}, L. Uvarov^{am}, S. Uzunvan^{az}, B. Vachon^e, P.J. van den Berg^{ag}, B. van Eijk^{ag}, R. Van Kooten^{bb}. W.M. van Leeuwen^{ag}, N. Varelas^{ay}, E.W. Varnes^{as}, A. Vartapetian^{bz}, I.A. Vasilyev^{al}, M. Vaupel^y, P. Verdier^s, L.S. Vertogradov^{ai}, M. Verzocchi^{ax}, F. Villeneuve-Seguier^{aq}, P. Vint^{aq}, P. Vokacⁱ, E. Von Toerne^{bg}, M. Voutilainen^{bo}, M. Vreeswijk^{ag}, R. Wagner^{bp}, H.D. Wahl^{aw}, L. Wang^{bi}, M.H.L.S. Wang ax, J. Warchol bc, G. Watts cd, M. Wayne bc, M. Weber ax, G. Weber w, H. Weerts bm A. Wenger^v, N. Wermes^u, M. Wetstein^{bi}, A. White^{bz}, D. Wicke^y, G.W. Wilson^{bf}, S.J. Wimpenny^{av}, M. Wobisch^{bh}, D.R. Wood^{bk}, T.R. Wyatt^{ar}, Y. Xie^{by}, S. Yacoob^{ba}, R. Yamada^{ax}, M. Yan^{bi}, T. Yasuda^{ax}, Y.A. Yatsunenko^{ai}, K. Yip^{bu}, H.D. Yoo^{by}, S.W. Youn^{ba}, J. Yu^{bz}, C. Yu^m, A. Yurkewicz^{bt}, A. Zatserklyaniy^{az}, C. Zeitnitz^y, D. Zhang^{ax}, T. Zhao^{cd}, B. Zhou^{bl}, J. Zhu^{bt}, M. Zielinski^{bs}, D. Zieminska^{bb}, A. Zieminski^{bb}, L. Zivkovic^{br}, V. Zutshi^{az}, E.G. Zverev^{ak} ^a Universidad de Buenos Aires, Buenos Aires, Argentina ^b LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil ^c Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ^d Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil ^e University of Alberta, Edmonton, Alberta, and Simon Fraser University, Burnaby, British Columbia, and York University, Toronto, Ontario, and McGill University, Montreal, Quebec, Canada ^f University of Science and Technology of China, Hefei, People's Republic of China ^g Universidad de los Andes, Bogotá, Colombia ^h Center for Particle Physics, Charles University, Prague, Czech Republic ⁱ Czech Technical University, Prague, Czech Republic ^j Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic ^k Universidad San Francisco de Quito, Quito, Ecuador ¹ Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France ^m Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France ⁿ CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France ^o Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud, Orsay, France ^p LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France ^q DAPNIA/Service de Physique des Particules, CEA, Saclay, France

r IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS, IN2P3, Strasbourg, France

^s IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne,

and Université de Lyon, Lyon, France

^t III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany ^u Physikalisches Institut, Universität Bonn, Bonn, Germany

^v Physikalisches Institut, Universität Freiburg, Freiburg, Germany

^w Institut für Physik, Universität Mainz, Mainz, Germany

^x Ludwig-Maximilians-Universität München, München, Germany

^y Fachbereich Physik, University of Wuppertal, Wuppertal, Germany

^z Panjab University, Chandigarh, India

^{aa} Delhi University, Delhi, India

^{ab} Tata Institute of Fundamental Research, Mumbai, India

ac University College Dublin, Dublin, Ireland

ad Korea Detector Laboratory, Korea University, Seoul, Republic of Korea

ae SungKyunKwan University, Suwon, Republic of Korea

^{af} CINVESTAV, Mexico City, Mexico

^{ag} FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

ah Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands

^{ai} Joint Institute for Nuclear Research, Dubna, Russia ^{aj} Institute for Theoretical and Experimental Physics, Moscow, Russia

^{ak} Moscow State University, Moscow, Russia

^{al} Institute for High Energy Physics, Protvino, Russia

am Petersburg Nuclear Physics Institute, St. Petersburg, Russia

an Lund University, Lund,

and Royal Institute of Technology and Stockholm University, Stockholm,

and Uppsala University, Uppsala, Sweden

ao Physik Institut der Universität Zürich, Zürich, Switzerland

^{ap} Lancaster University, Lancaster, United Kingdom

^{aq} Imperial College, London, United Kingdom

^{ar} University of Manchester, Manchester, United Kingdom

as University of Arizona, Tucson, AZ 85721, USA ^{at} Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA ^{au} California State University, Fresno, CA 93740, USA av University of California, Riverside, CA 92521, USA ^{aw} Florida State University, Tallahassee, FL 32306, USA ax Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ay University of Illinois at Chicago, Chicago, IL 60607, USA ^{az} Northern Illinois University, DeKalb, IL 60115, USA ba Northwestern University, Evanston, IL 60208, USA bb Indiana University, Bloomington, IN 47405, USA bc University of Notre Dame, Notre Dame, IN 46556, USA bd Purdue University Calumet, Hammond, IN 46323, USA be Iowa State University, Ames, IA 50011, USA ^{bf} University of Kansas, Lawrence, KS 66045, USA ^{bg} Kansas State University, Manhattan, KS 66506, USA ^{bh} Louisiana Tech University, Ruston, LS 71272, USA bi University of Maryland, College Park, MD 20742, USA bj Boston University, Boston, MA 02215, USA bk Northeastern University, Boston, MA 02115, USA ^{bl} University of Michigan, Ann Arbor, MI 48109, USA bm Michigan State University, East Lansing, MI 48824, USA ^{bn} University of Mississippi, University, MS 38677, USA bo University of Nebraska, Lincoln, NE 68588, USA bp Princeton University, Princeton, NJ 08544, USA ^{bq} State University of New York, Buffalo, NY 14260, USA br Columbia University, New York, NY 10027, USA bs University of Rochester, Rochester, NY 14627, USA bt State University of New York, Stony Brook, NY 11794, USA ^{bu} Brookhaven National Laboratory, Upton, NY 11973, USA ^{bv} Langston University, Langston, OK 73050, USA bw University of Oklahoma, Norman, OK 73019, USA bx Oklahoma State University, Stillwater, OK 74078, USA by Brown University, Providence, RI 02912, USA bz University of Texas, Arlington, TX 76019, USA ca Southern Methodist University, Dallas, TX 75275, USA ^{cb} Rice University, Houston, TX 77005, USA ^{cc} University of Virginia, Charlottesville, VA 22901, USA ^{cd} University of Washington, Seattle, WA 98195, USA

Received 7 June 2007

Available online 27 June 2007

The measurement of the inclusive isolated photon cross section published in our recent Letter [1] requires a correction for two effects: an increase in the reported integrated luminosity and an adjustment to the estimation of the energy response of the calorimeter to photons.

The instantaneous luminosity at DØ is measured by counting the number of inelastic collisions that produce charged particles within the acceptance of the luminosity monitor [2]. The determination of the luminosity has recently been improved through studies of the multiplicities observed in the luminosity monitor [3]. These studies indicated that the fraction of observable inelastic collisions was overestimated in our previous analysis [4]. We have also added corrections for the time dependence of the luminosity counter efficiencies. The result of these improvements is to increase the assessment of the total integrated luminosity for this analysis by 16.7% to $380 \pm 23 \text{ pb}^{-1}$ and to decrease the estimated uncertainty from 6.5% to 6.1%.

The energy response of the calorimeter to photons was calibrated using electrons from Z boson decays. Photons and electrons shower differently in matter, and photon energies needed to be shifted down, as we indicated in the Letter. However, this shift was estimated considering only direct photons. As shown in Fig. 4 of the Letter, the fraction of photons at low p_T that are true direct photons is only $\approx 40\%$. The background photons, primarily from π^0 or η meson decays, have a softer energy distribution than signal photons which results in a smaller reconstructed p_T . The total average p_T shift of the photon candidates with respect to the true photon p_T has been determined by weighting signal and background events according to the photon purity (Fig. 4 of the Letter). As compared with the p_T shift estimated for pure direct photons [5], the new estimate leads to about 3.6% p_T correction for the first bin with $\langle p_T^{\gamma} \rangle \simeq 24 \text{ GeV}$, about 2% at $\langle p_T^{\gamma} \rangle \simeq 40 \text{ GeV}$ and less than 1% for $p_T^{\gamma} \ge 60 \text{ GeV}$.

DOI of original article: 10.1016/j.physletb.2006.04.048.

^{*} Corresponding author.

E-mail address: bandurin@fnal.gov (D.V. Bandurin).

Table 1

The measured differential cross section for the production of isolated photons, averaged over $|\eta| < 0.9$, in bins of p_T^{γ} . $\langle p_T^{\gamma} \rangle$ is the average p_T^{γ} within each bin. The columns $\delta\sigma_{\text{stat}}$ and $\delta\sigma_{\text{syst}}$ represent the statistical and systematic uncertainties, respectively

p_T^{γ}	$\langle p_T^{\gamma} \rangle$	$d^2\sigma/dp_T^{\gamma}d\eta$	$\delta\sigma_{\rm stat}$	$\delta\sigma_{ m syst}$
(GeV)	(GeV)	(pb/GeV)	(%)	(%)
23-25	24.1	4.19×10^2	0.1	23
25-30	27.1	2.22×10^2	0.1	19
30-34	31.8	1.00×10^{2}	0.2	16
34–39	36.1	5.30×10^1	0.2	15
39–44	41.2	2.85×10^{1}	0.3	14
44-50	46.7	1.51×10^1	0.4	13
50-60	54.2	7.38×10^0	0.4	13
60-70	64.3	3.14×10^{0}	0.6	13
70-80	74.4	1.54×10^0	0.9	12
80–90	84.4	8.37×10^{-1}	1.3	12
90-110	98.2	3.91×10^{-1}	1.4	12
110-130	118	1.48×10^{-1}	2.3	12
130-150	139	$6.76 imes 10^{-2}$	3.5	13
150-170	159	2.80×10^{-2}	5.6	13
170-200	183	1.43×10^{-2}	6.5	14
200-230	213	6.27×10^{-3}	9.8	14
230-300	255	1.54×10^{-3}	13	15

The inclusive isolated photon cross section has been recalculated including both luminosity and p_T scale corrections. They are presented in Table 1 and compared with a NLO pQCD calculation [6] in Fig. 1. The new correction factors have similar magnitude but opposite effect at low p_T so the cross section does not change significantly. At high p_T , however, the p_T scale correction is minimal so the average cross section drops by 15%. This results in a stretching of the shape between low and high p_T compared to the measurement published in the Letter.

In general, NLO QCD predictions agree with the data taking into account the total experimental and theoretical uncertainties. However, the data-to-theory ratio has a shape similar to that seen by the UA2 [7] and CDF [8] experiments. It is also suggestive of the shapes expected from extensions to NLO pQCD that incorporate the effects of soft gluon resummation [9–11].

Acknowledgements

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and

Fig. 1. The ratio of the measured cross section to the theoretical predictions from JETPHOX. The full vertical lines correspond to the overall uncertainty while the inner line indicates just the statistical uncertainty. The dashed lines represent the change in the cross section when varying the theoretical scales by factors of two. The shaded region indicates the uncertainty in the cross section estimated with CTEQ6.1 PDF.

RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUN-DUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CON-ICET and UBACyT (Argentina); FOM (The Netherlands); Science and Technology Facilities Council (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation; and the Marie Curie Program.

References

- [1] V.M. Abazov, et al., DØ Collaboration, Phys. Lett. B 639 (2006) 151.
- [2] V.M. Abazov, et al., DØ Collaboration, Nucl. Instrum. Methods Phys. Res. A 565 (2006) 463.
- [3] T. Andeen, et al., FERMILAB-TM-2365-E, 2007.
- [4] T. Edwards, et al., FERMILAB-TM-2278-E, 2004.
- [5] J.A. Appel, et al., UA2 Collaboration, Phys. Lett. B 176 (1986) 239.
- [6] T. Binoth, et al., Eur. Phys. J. C 16 (2000) 311;
 S. Catani, et al., JHEP 0205 (2002) 028.
- [7] J. Alitti, et al., UA2 Collaboration, Phys. Lett. B 263 (1991) 544.
- [8] D. Acosta, et al., CDF Collaboration, Phys. Rev. D 65 (2002) 112003.
- [9] G. Sterman, W. Vogelsang, Phys. Rev. D 71 (2005) 014013.
- [10] L. Apanasevich, et al., Phys. Rev. D 59 (1999) 074007.
- [11] A.V. Lipatov, N.P. Zotov, J. Phys. G 34 (2007) 219.

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 658 (2008) 285-289

www.elsevier.com/locate/physletb

Erratum

Erratum to: "Measurement of the isolated photon cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV" [Phys. Lett. B 639 (2006) 151]

DØ Collaboration

V.M. Abazov^{ai}, B. Abbott^{bw}, M. Abolins^{bm}, B.S. Acharya^{ab}, M. Adams^{ay}, T. Adams^{aw}, E. Aguilo^e, S.H. Ahn^{ad}, M. Ahsan^{bg}, G.D. Alexeev^{ai}, G. Alkhazov^{am}, A. Alton^{bl}, G. Alverson^{bk}, G.A. Alves^b, M. Anastasoaie^{ah}, L.S. Ancu^{ah}, T. Andeen^{ba}, S. Anderson^{as}, B. Andrieu^p, M.S. Anzelc^{ba}, Y. Arnoud^m, M. Arov^{bh}, M. Arthaud^q, A. Askew^{aw}, B. Åsman^{an}, A.C.S. Assis Jesus^c, O. Atramentov^{aw}, C. Autermann^t, C. Avila^g, C. Ay^w, F. Badaud¹, A. Baden^{bi}, L. Bagby^{az}, B. Baldin ^{ax}, D.V. Bandurin ^{bg,*}, S. Banerjee ^{ab}, P. Banerjee ^{ab}, E. Barberis ^{bk}, A.-F. Barfuss ⁿ, P. Bargassa ^{cb}, P. Baringer ^{bf}, J. Barreto ^b, J.F. Bartlett ^{ax}, U. Bassler ^p, D. Bauer ^{aq}, S. Beale ^e, A. Bean^{bf}, M. Begalli^c, M. Begel^{bs}, C. Belanger-Champagne^{an}, L. Bellantoni^{ax}, A. Bellavance^{ax}, J.A. Benitez^{bm}, S.B. Beri^z, G. Bernardi^p, R. Bernhard^v, L. Berntzonⁿ, I. Bertram^{ap}, M. Besançon^q, R. Beuselinck ^{aq}, V.A. Bezzubov ^{al}, P.C. Bhat ^{ax}, V. Bhatnagar ^z, C. Biscarat ^s, G. Blazey ^{az},
F. Blekman ^{aq}, S. Blessing ^{aw}, D. Bloch ^r, K. Bloom ^{bo}, A. Boehnlein ^{ax}, D. Boline ^{bj}, T.A. Bolton ^{bg}, G. Borissov^{ap}, K. Bos^{ag}, T. Bose^{by}, A. Brandt^{bz}, R. Brock^{bm}, G. Brooijmans^{br}, A. Bross^{ax}, D. Brown^{bz}, N.J. Buchanan^{aw}, D. Buchholz^{ba}, M. Buehler^{cc}, V. Buescher^u, S. Burdin^{ap}, S. Burke^{as}, T.H. Burnett^{cd}, C.P. Buszello^{aq}, J.M. Butler^{bj}, P. Calfayan^x, S. Calvetⁿ, J. Cammin^{bs}, S. Caron^{ag}, W. Carvalho^c, B.C.K. Casey^{by}, N.M. Cason^{bc}, H. Castilla-Valdez^{af}, S. Chakrabarti^q, D. Chakraborty ^{az}, K.M. Chan ^{bc}, K. Chan ^e, A. Chandra ^{av}, F. Charles ^r, E. Cheu ^{as}, F. Chevallier ^m, D.K. Cho^{bj}, S. Choi^{ae}, B. Choudhary^{aa}, L. Christofek^{by}, T. Christoudias^{aq}, S. Cihangir^{ax}, D. Claes^{bo}, C. Clément^{an}, B. Clément^r, Y. Coadou^e, M. Cooke^{cb}, W.E. Cooper^{ax}, M. Corcoran^{cb}, F. Couderc^q, M.-C. Cousinouⁿ, S. Crépé-Renaudin^m, D. Cutts^{by}, M. Ćwiok^{ac}, H. da Motta^b, A. Das ^{bj}, G. Davies ^{aq}, K. De ^{bz}, S.J. de Jong ^{ah}, P. de Jong ^{ag}, E. De La Cruz-Burelo ^{bl}, C. De Oliveira Martins^c, J.D. Degenhardt^{bl}, F. Déliot^q, M. Demarteau^{ax}, R. Demina^{bs}, D. Denisov ^{ax}, S.P. Denisov ^{al}, S. Desai ^{ax}, H.T. Diehl ^{ax}, M. Diesburg ^{ax}, A. Dominguez ^{bo}, H. Dong ^{bt}, L.V. Dudko ^{ak}, L. Duflot ^o, S.R. Dugad ^{ab}, D. Duggan ^{aw}, A. Duperrin ⁿ, J. Dyer ^{bm}, A. Dyshkant ^{az}, M. Eads ^{bo}, D. Edmunds ^{bm}, J. Ellison ^{av}, V.D. Elvira ^{ax}, Y. Enari ^{by}, S. Eno ^{bi}, P. Ermolov ^{ak}, H. Evans ^{bb}, A. Evdokimov ^{bu}, V.N. Evdokimov ^{al}, A.V. Ferapontov ^{bg}, T. Ferbel ^{bs}, F. Fiedler ^x, E. Ellison ^{av}, M. E. L. S. Elvira ^{ax}, M. E. Evans ^{bb}, A. Evdokimov ^{bu}, V.N. Evdokimov ^{al}, A.V. Ferapontov ^{bg}, T. Ferbel ^{bs}, F. Fiedler ^x, E. Ellison ^{av}, M. E. L. S. Elvira ^{ax}, M. E. Elvira ^{ax}, M. E. Elvira ^{ax}, M. E. Elvira ^{ax}, M. E. Elvira ^{bb}, S. Eno ^{bi}, P. Ermolov ^{ak}, E. Elvira ^{bb}, A. Evdokimov ^{bu}, V.N. Evdokimov ^{al}, A.V. Ferapontov ^{bg}, T. Ferbel ^{bs}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, E. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, F. Fiedler ^x, E. Elvira ^x, F. Fiedler ^x, F. Fie F. Filthaut^{ah}, W. Fisher^{ax}, H.E. Fisk^{ax}, M. Ford^{ar}, M. Fortner^{az}, H. Fox^v, S. Fu^{ax}, S. Fuess^{ax}, T. Gadfort^{cd}, C.F. Galea^{ah}, E. Gallas^{ax}, E. Galyaev^{bc}, C. Garcia^{bs}, A. Garcia-Bellido^{cd}, V. Gavrilov^{aj}, P. Gay¹, W. Geist^r, D. Gelé^r, C.E. Gerber^{ay}, Y. Gershtein^{aw}, D. Gillberg^e, G. Ginther^{bs}, N. Gollub^{an}, B. Gómez^g, A. Goussiou^{bc}, P.D. Grannis^{bt}, H. Greenlee^{ax}, Z.D. Greenwood ^{bh}, E.M. Gregores ^d, G. Grenier ^s, Ph. Gris¹, J.-F. Grivaz ^o, A. Grohsjean ^x, S. Grünendahl^{ax}, M.W. Grünewald^{ac}, J. Guo^{bt}, F. Guo^{bt}, P. Gutierrez^{bw}, G. Gutierrez^{ax}, A. Haas^{br}, N.J. Hadley^{bi}, P. Haefner^x, S. Hagopian^{aw}, J. Haley^{bp}, I. Hall^{bw}, R.E. Hall^{au}, L. Han^f,

K. Hanagaki^{ax}, P. Hansson^{an}, K. Harder^{ar}, A. Harel^{bs}, R. Harrington^{bk}, J.M. Hauptman^{be}, R. Hauser^{bm}, J. Hays^{aq}, T. Hebbeker^t, D. Hedin^{az}, J.G. Hegeman^{ag}, J.M. Heinmiller^{ay}, A.P. Heinson^{av}, U. Heintz^{bj}, C. Hensel^{bf}, K. Herner^{bt}, G. Hesketh^{bk}, M.D. Hildreth^{bc}, R. Hirosky^{cc}, J.D. Hobbs^{bt}, B. Hoeneisen^k, H. Hoeth^y, M. Hohlfeld^u, S.J. Hong^{ad}, R. Hooper^{by}, S. Hossain^{bw} P. Houben^{ag}, Y. Hu^{bt}, Z. Hubacekⁱ, V. Hynek^h, I. Iashvili^{bq}, R. Illingworth^{ax}, A.S. Ito^{ax}, S. Jabeen^{bj}, M. Jaffré^o, S. Jain^{bw}, K. Jakobs^v, C. Jarvis^{bi}, R. Jesik^{aq}, K. Johns^{as}, C. Johnson^{br}, M. Johnson^{ax}, A. Jonckheere^{ax}, P. Jonsson^{aq}, A. Juste^{ax}, D. Käfer^t, S. Kahn^{bu}, E. Kajfaszⁿ, A.M. Kalinin^{ai}, J.R. Kalk^{bm}, J.M. Kalk^{bh}, S. Kappler^t, D. Karmanov^{ak}, J. Kasper^{bj}, P. Kasper^{ax}, I. Katsanos^{br}, D. Kau^{aw}, R. Kaur^z, V. Kaushik^{bz}, R. Kehoe^{ca}, S. Kermicheⁿ, N. Khalatyan^{al}, A. Khanov^{bx}, A. Kharchilava^{bq}, Y.M. Kharzheev^{ai}, D. Khatidze^{br}, H. Kim^{ae}, T.J. Kim^{ad}, M.H. Kirby^{ah}, M. Kirsch^t, B. Klima^{ax}, J.M. Kohli^z, J.-P. Konrath^v, M. Kopal^{bw}, V.M. Korablev^{al}, B. Kothari^{br}, A.V. Kozelov^{al}, D. Krop^{bb}, A. Kryemadhi^{cc}, T. Kuhl^w, A. Kumar^{bq}, S. Kunori^{bi}, A. Kupco^j, T. Kurča^s, J. Kvita^h, F. Lacroix¹, D. Lam^{bc}, S. Lammers^{br}, G. Landsberg^{by}, J. Lazoflores^{aw}, P. Lebrun^s, W.M. Lee^{ax}, A. Leflat^{ak}, F. Lehner^{ao}, J. Lellouch^p, V. Lesne¹, J. Leveque^{as}, P. Lewis^{aq}, J. Li^{bz}, Q.Z. Li^{ax}, L. Li^{av}, S.M. Lietti^d, J.G.R. Lima^{az}, D. Lincoln^{ax}, J. Linnemann^{bm}, V.V. Lipaev^{al}, R. Lipton ^{ax}, Y. Liu^f, Z. Liu^e, L. Lobo ^{aq}, A. Lobodenko ^{am}, M. Lokajicek^j, A. Lounis^r, P. Love ^{ap}, H.J. Lubatti ^{cd}, A.L. Lyon ^{ax}, A.K.A. Maciel^b, D. Mackin ^{cb}, R.J. Madaras ^{at}, P. Mättig^y, C. Magass^t, A. Magerkurth^{bl}, N. Makovec^o, P.K. Mal^{bc}, H.B. Malbouisson^c, S. Malik^{bo}, V.L. Malyshev^{ai}, H.S. Mao^{ax}, Y. Maravin^{bg}, B. Martin^m, R. McCarthy^{bt}, A. Melnitchouk^{bn}, A. Mendesⁿ, L. Mendoza^g, P.G. Mercadante^d, M. Merkin^{ak}, K.W. Merritt^{ax}, J. Meyer^u, A. Meyer^t, M. Michaut^q, T. Millet^s, J. Mitrevski^{br}, J. Molina^c, R.K. Mommsen^{ar}, N.K. Mondal^{ab}, R.W. Moore^e, T. Moulik^{bf}, G.S. Muanza^s, M. Mulders^{ax}, M. Mulhearn^{br}, O. Mundal^u, L. Mundim^c, E. Nagyⁿ, M. Naimuddin^{ax}, M. Narain^{by}, N.A. Naumann^{ah}, H.A. Neal^{bl}, J.P. Negret^g, P. Neustroev^{am}, H. Nilsen^v, A. Nomerotski^{ax}, S.F. Novaes^d, T. Nunnemann^x, V. O'Dell^{ax}, D.C. O'Neil^e, G. Obrant^{am}, C. Ochando^o, D. Onoprienko^{bg}, N. Oshima^{ax}, J. Osta^{bc}, R. Otecⁱ, G.J. Otero y Garzón ^{ay}, M. Owen ^{ar}, P. Padley ^{cb}, M. Pangilinan ^{by}, N. Parashar ^{bd}, S.-J. Park ^{bs}, S.K. Park ^{ad}, J. Parsons ^{br}, R. Partridge ^{by}, N. Parua ^{bb}, A. Patwa ^{bu}, G. Pawloski ^{cb}, B. Penning ^v, P.M. Perea av, K. Peters ar, Y. Peters y, P. Pétroff o, M. Petteni aq, R. Piegaia a, J. Piper bm, M.-A. Pleier^u, P.L.M. Podesta-Lerma^{af}, V.M. Podstavkov^{ax}, Y. Pogorelov^{bc}, M.-E. Pol^b, P. Polozov^{aj}, A. Pompoš^{bw}, B.G. Pope^{bm}, A.V. Popov^{al}, C. Potter^e, W.L. Prado da Silva^c, H.B. Prosper^{aw}, S. Protopopescu^{bu}, J. Qian^{bl}, A. Quadt^u, B. Quinn^{bn}, A. Rakitine^{ap}, M.S. Rangel^b, K.J. Rani^{ab}, K. Ranjan^{aa}, P.N. Ratoff^{ap}, P. Renkel^{ca}, S. Reucroft^{bk}, P. Rich^{ar}, M. Rijssenbeek^{bt}, I. Ripp-Baudot^r, F. Rizatdinova^{bx}, S. Robinson^{aq}, R.F. Rodrigues^c, C. Royon^q, P. Rubinov^{ax}, R. Ruchti^{bc}, G. Safronov^{aj}, G. Sajot^m, A. Sánchez-Hernández^{af}, M.P. Sanders^p, A. Santoro^c, G. Savage^{ax}, L. Sawyer^{bh}, T. Scanlon^{aq}, D. Schaile^x, R.D. Schamberger^{bt}, Y. Scheglov^{am}, H. Schellman^{ba}, P. Schieferdecker^x, T. Schliephake^y, C. Schmitt^y, C. Schwanenberger^{ar}, A. Schwartzman^{bp}, R. Schwienhorst^{bm}, J. Sekaric^{aw}, S. Sengupta^{aw}, H. Severini^{bw}, E. Shabalina^{ay}, M. Shamim^{bg}, V. Shary^q, A.A. Shchukin^{al}, R.K. Shivpuri^{aa}, D. Shpakov^{ax}, V. Siccardi^r, V. Simakⁱ, V. Sirotenko^{ax}, P. Skubic^{bw}, P. Slattery^{bs}, D. Smirnov^{bc}, R.P. Smith^{ax}, J. Snow^{bv}, G.R. Snow^{bo}, S. Snyder^{bu}, S. Söldner-Rembold^{ar}, L. Sonnenschein^p, A. Sopczak^{ap}, M. Sosebee^{bz}, K. Soustruznik^h, M. Souza^b, B. Spurlock^{bz}, J. Stark^m, J. Steele^{bh}, V. Stolin^{aj}, A. Stone^{ay}, D.A. Stoyanova^{al}, J. Strandberg^{bl}, S. Strandberg^{an}, M.A. Strang^{bq}, M. Strauss^{bw}, E. Strauss^{bt}, R. Ströhmer^x, D. Strom^{ba}, M. Strovink^{at}, L. Stutte^{ax}, S. Sumowidagdo^{aw}, P. Svoisky^{bc}, A. Sznajder^c, M. Talbyⁿ, P. Tamburello^{as}, A. Tanasijczuk^a, W. Taylor^e, P. Telford^{ar}, J. Temple^{as}, B. Tiller^x, F. Tissandier¹, M. Titov^q, V.V. Tokmenin^{ai}, M. Tomoto^{ax}, T. Toole^{bi}, I. Torchiani^v,

T. Trefzger^w, D. Tsybychev^{bt}, B. Tuchming^q, C. Tully^{bp}, P.M. Tuts^{br}, R. Unalan^{bm}, S. Uvarov^{am}, L. Uvarov^{am}, S. Uzunvan^{az}, B. Vachon^e, P.J. van den Berg^{ag}, B. van Eijk^{ag}, R. Van Kooten^{bb}. W.M. van Leeuwen^{ag}, N. Varelas^{ay}, E.W. Varnes^{as}, A. Vartapetian^{bz}, I.A. Vasilyev^{al}, M. Vaupel^y, P. Verdier^s, L.S. Vertogradov^{ai}, M. Verzocchi^{ax}, F. Villeneuve-Seguier^{aq}, P. Vint^{aq}, P. Vokacⁱ, E. Von Toerne^{bg}, M. Voutilainen^{bo}, M. Vreeswijk^{ag}, R. Wagner^{bp}, H.D. Wahl^{aw}, L. Wang^{bi}, M.H.L.S. Wang ax, J. Warchol bc, G. Watts cd, M. Wayne bc, M. Weber ax, G. Weber w, H. Weerts bm A. Wenger^v, N. Wermes^u, M. Wetstein^{bi}, A. White^{bz}, D. Wicke^y, G.W. Wilson^{bf}, S.J. Wimpenny^{av}, M. Wobisch^{bh}, D.R. Wood^{bk}, T.R. Wyatt^{ar}, Y. Xie^{by}, S. Yacoob^{ba}, R. Yamada^{ax}, M. Yan^{bi}, T. Yasuda^{ax}, Y.A. Yatsunenko^{ai}, K. Yip^{bu}, H.D. Yoo^{by}, S.W. Youn^{ba}, J. Yu^{bz}, C. Yu^m, A. Yurkewicz^{bt}, A. Zatserklyaniy^{az}, C. Zeitnitz^y, D. Zhang^{ax}, T. Zhao^{cd}, B. Zhou^{bl}, J. Zhu^{bt}, M. Zielinski^{bs}, D. Zieminska^{bb}, A. Zieminski^{bb}, L. Zivkovic^{br}, V. Zutshi^{az}, E.G. Zverev^{ak} ^a Universidad de Buenos Aires, Buenos Aires, Argentina ^b LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil ^c Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ^d Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil ^e University of Alberta, Edmonton, Alberta, and Simon Fraser University, Burnaby, British Columbia, and York University, Toronto, Ontario, and McGill University, Montreal, Quebec, Canada ^f University of Science and Technology of China, Hefei, People's Republic of China ^g Universidad de los Andes, Bogotá, Colombia ^h Center for Particle Physics, Charles University, Prague, Czech Republic ⁱ Czech Technical University, Prague, Czech Republic ^j Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic ^k Universidad San Francisco de Quito, Quito, Ecuador ¹ Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France ^m Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France ⁿ CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France ^o Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud, Orsay, France ^p LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France ^q DAPNIA/Service de Physique des Particules, CEA, Saclay, France ^r IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS, IN2P3, Strasbourg, France ^s IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, and Université de Lyon, Lyon, France t III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany ^u Physikalisches Institut, Universität Bonn, Bonn, Germany ^v Physikalisches Institut, Universität Freiburg, Freiburg, Germany ^w Institut für Physik, Universität Mainz, Mainz, Germany ^x Ludwig-Maximilians-Universität München, München, Germany ^y Fachbereich Physik, University of Wuppertal, Wuppertal, Germany ^z Paniab University, Chandigarh, India ^{aa} Delhi University, Delhi, India ^{ab} Tata Institute of Fundamental Research, Mumbai, India ac University College Dublin, Dublin, Ireland ^{ad} Korea Detector Laboratory, Korea University, Seoul, Republic of Korea

ae SungKyunKwan University, Suwon, Republic of Korea

af CINVESTAV, Mexico City, Mexico

^{ag} FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

ah Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands

^{ai} Joint Institute for Nuclear Research, Dubna, Russia

^{aj} Institute for Theoretical and Experimental Physics, Moscow, Russia

^{ak} Moscow State University, Moscow, Russia

^{al} Institute for High Energy Physics, Protvino, Russia

am Petersburg Nuclear Physics Institute, St. Petersburg, Russia

^{an} Lund University, Lund,

and Royal Institute of Technology and Stockholm University, Stockholm,

and Uppsala University, Uppsala, Sweden

ao Physik Institut der Universität Zürich, Zürich, Switzerland

^{ap} Lancaster University, Lancaster, United Kingdom

^{aq} Imperial College, London, United Kingdom

ar University of Manchester, Manchester, United Kingdom

as University of Arizona, Tucson, AZ 85721, USA ^{at} Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA ^{au} California State University, Fresno, CA 93740, USA av University of California, Riverside, CA 92521, USA ^{aw} Florida State University, Tallahassee, FL 32306, USA ax Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ay University of Illinois at Chicago, Chicago, IL 60607, USA ^{az} Northern Illinois University, DeKalb, IL 60115, USA ba Northwestern University, Evanston, IL 60208, USA bb Indiana University, Bloomington, IN 47405, USA bc University of Notre Dame, Notre Dame, IN 46556, USA bd Purdue University Calumet, Hammond, IN 46323, USA be Iowa State University, Ames, IA 50011, USA ^{bf} University of Kansas, Lawrence, KS 66045, USA ^{bg} Kansas State University, Manhattan, KS 66506, USA ^{bh} Louisiana Tech University, Ruston, LS 71272, USA bi University of Maryland, College Park, MD 20742, USA bj Boston University, Boston, MA 02215, USA bk Northeastern University, Boston, MA 02115, USA ^{bl} University of Michigan, Ann Arbor, MI 48109, USA bm Michigan State University, East Lansing, MI 48824, USA ^{bn} University of Mississippi, University, MS 38677, USA bo University of Nebraska, Lincoln, NE 68588, USA bp Princeton University, Princeton, NJ 08544, USA ^{bq} State University of New York, Buffalo, NY 14260, USA br Columbia University, New York, NY 10027, USA bs University of Rochester, Rochester, NY 14627, USA bt State University of New York, Stony Brook, NY 11794, USA ^{bu} Brookhaven National Laboratory, Upton, NY 11973, USA ^{bv} Langston University, Langston, OK 73050, USA bw University of Oklahoma, Norman, OK 73019, USA bx Oklahoma State University, Stillwater, OK 74078, USA by Brown University, Providence, RI 02912, USA bz University of Texas, Arlington, TX 76019, USA ca Southern Methodist University, Dallas, TX 75275, USA ^{cb} Rice University, Houston, TX 77005, USA ^{cc} University of Virginia, Charlottesville, VA 22901, USA ^{cd} University of Washington, Seattle, WA 98195, USA

Received 7 June 2007

Available online 27 June 2007

The measurement of the inclusive isolated photon cross section published in our recent Letter [1] requires a correction for two effects: an increase in the reported integrated luminosity and an adjustment to the estimation of the energy response of the calorimeter to photons.

The instantaneous luminosity at DØ is measured by counting the number of inelastic collisions that produce charged particles within the acceptance of the luminosity monitor [2]. The determination of the luminosity has recently been improved through studies of the multiplicities observed in the luminosity monitor [3]. These studies indicated that the fraction of observable inelastic collisions was overestimated in our previous analysis [4]. We have also added corrections for the time dependence of the luminosity counter efficiencies. The result of these improvements is to increase the assessment of the total integrated luminosity for this analysis by 16.7% to $380 \pm 23 \text{ pb}^{-1}$ and to decrease the estimated uncertainty from 6.5% to 6.1%.

The energy response of the calorimeter to photons was calibrated using electrons from Z boson decays. Photons and electrons shower differently in matter, and photon energies needed to be shifted down, as we indicated in the Letter. However, this shift was estimated considering only direct photons. As shown in Fig. 4 of the Letter, the fraction of photons at low p_T that are true direct photons is only $\approx 40\%$. The background photons, primarily from π^0 or η meson decays, have a softer energy distribution than signal photons which results in a smaller reconstructed p_T . The total average p_T shift of the photon candidates with respect to the true photon p_T has been determined by weighting signal and background events according to the photon purity (Fig. 4 of the Letter). As compared with the p_T shift estimated for pure direct photons [5], the new estimate leads to about 3.6% p_T correction for the first bin with $\langle p_T^{\gamma} \rangle \simeq 24 \text{ GeV}$, about 2% at $\langle p_T^{\gamma} \rangle \simeq 40 \text{ GeV}$ and less than 1% for $p_T^{\gamma} \ge 60 \text{ GeV}$.

DOI of original article: 10.1016/j.physletb.2006.04.048.

^{*} Corresponding author.

E-mail address: bandurin@fnal.gov (D.V. Bandurin).

Table 1

The measured differential cross section for the production of isolated photons, averaged over $|\eta| < 0.9$, in bins of p_T^{γ} . $\langle p_T^{\gamma} \rangle$ is the average p_T^{γ} within each bin. The columns $\delta\sigma_{\text{stat}}$ and $\delta\sigma_{\text{syst}}$ represent the statistical and systematic uncertainties, respectively

p_T^{γ}	$\langle p_T^{\gamma} \rangle$	$d^2\sigma/dp_T^{\gamma}d\eta$	$\delta\sigma_{\rm stat}$	$\delta\sigma_{ m syst}$
(GeV)	(GeV)	(pb/GeV)	(%)	(%)
23-25	24.1	4.19×10^2	0.1	23
25-30	27.1	2.22×10^2	0.1	19
30-34	31.8	1.00×10^{2}	0.2	16
34–39	36.1	5.30×10^1	0.2	15
39–44	41.2	2.85×10^{1}	0.3	14
44-50	46.7	1.51×10^1	0.4	13
50-60	54.2	7.38×10^0	0.4	13
60-70	64.3	3.14×10^{0}	0.6	13
70-80	74.4	1.54×10^0	0.9	12
80–90	84.4	8.37×10^{-1}	1.3	12
90-110	98.2	3.91×10^{-1}	1.4	12
110-130	118	1.48×10^{-1}	2.3	12
130-150	139	$6.76 imes 10^{-2}$	3.5	13
150-170	159	2.80×10^{-2}	5.6	13
170-200	183	1.43×10^{-2}	6.5	14
200-230	213	6.27×10^{-3}	9.8	14
230-300	255	1.54×10^{-3}	13	15

The inclusive isolated photon cross section has been recalculated including both luminosity and p_T scale corrections. They are presented in Table 1 and compared with a NLO pQCD calculation [6] in Fig. 1. The new correction factors have similar magnitude but opposite effect at low p_T so the cross section does not change significantly. At high p_T , however, the p_T scale correction is minimal so the average cross section drops by 15%. This results in a stretching of the shape between low and high p_T compared to the measurement published in the Letter.

In general, NLO QCD predictions agree with the data taking into account the total experimental and theoretical uncertainties. However, the data-to-theory ratio has a shape similar to that seen by the UA2 [7] and CDF [8] experiments. It is also suggestive of the shapes expected from extensions to NLO pQCD that incorporate the effects of soft gluon resummation [9–11].

Acknowledgements

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and

Fig. 1. The ratio of the measured cross section to the theoretical predictions from JETPHOX. The full vertical lines correspond to the overall uncertainty while the inner line indicates just the statistical uncertainty. The dashed lines represent the change in the cross section when varying the theoretical scales by factors of two. The shaded region indicates the uncertainty in the cross section estimated with CTEQ6.1 PDF.

RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUN-DUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CON-ICET and UBACyT (Argentina); FOM (The Netherlands); Science and Technology Facilities Council (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation; and the Marie Curie Program.

References

- [1] V.M. Abazov, et al., DØ Collaboration, Phys. Lett. B 639 (2006) 151.
- [2] V.M. Abazov, et al., DØ Collaboration, Nucl. Instrum. Methods Phys. Res. A 565 (2006) 463.
- [3] T. Andeen, et al., FERMILAB-TM-2365-E, 2007.
- [4] T. Edwards, et al., FERMILAB-TM-2278-E, 2004.
- [5] J.A. Appel, et al., UA2 Collaboration, Phys. Lett. B 176 (1986) 239.
- [6] T. Binoth, et al., Eur. Phys. J. C 16 (2000) 311;
 S. Catani, et al., JHEP 0205 (2002) 028.
- [7] J. Alitti, et al., UA2 Collaboration, Phys. Lett. B 263 (1991) 544.
- [8] D. Acosta, et al., CDF Collaboration, Phys. Rev. D 65 (2002) 112003.
- [9] G. Sterman, W. Vogelsang, Phys. Rev. D 71 (2005) 014013.
- [10] L. Apanasevich, et al., Phys. Rev. D 59 (1999) 074007.
- [11] A.V. Lipatov, N.P. Zotov, J. Phys. G 34 (2007) 219.

Available online at www.sciencedirect.com

PHYSICS LETTERS B

Physics Letters B 658 (2008) 285-289

www.elsevier.com/locate/physletb

Erratum

Erratum to: "Measurement of the isolated photon cross section in $p\bar{p}$ collisions at $\sqrt{s} = 1.96$ TeV" [Phys. Lett. B 639 (2006) 151]

DØ Collaboration

V.M. Abazov^{ai}, B. Abbott^{bw}, M. Abolins^{bm}, B.S. Acharya^{ab}, M. Adams^{ay}, T. Adams^{aw}, E. Aguilo^e, S.H. Ahn^{ad}, M. Ahsan^{bg}, G.D. Alexeev^{ai}, G. Alkhazov^{am}, A. Alton^{bl}, G. Alverson^{bk}, G.A. Alves^b, M. Anastasoaie^{ah}, L.S. Ancu^{ah}, T. Andeen^{ba}, S. Anderson^{as}, B. Andrieu^p, M.S. Anzelc^{ba}, Y. Arnoud^m, M. Arov^{bh}, M. Arthaud^q, A. Askew^{aw}, B. Åsman^{an}, A.C.S. Assis Jesus^c, O. Atramentov^{aw}, C. Autermann^t, C. Avila^g, C. Ay^w, F. Badaud¹, A. Baden^{bi}, L. Bagby^{az}, B. Baldin ^{ax}, D.V. Bandurin ^{bg,*}, S. Banerjee ^{ab}, P. Banerjee ^{ab}, E. Barberis ^{bk}, A.-F. Barfuss ⁿ, P. Bargassa ^{cb}, P. Baringer ^{bf}, J. Barreto ^b, J.F. Bartlett ^{ax}, U. Bassler ^p, D. Bauer ^{aq}, S. Beale ^e, A. Bean^{bf}, M. Begalli^c, M. Begel^{bs}, C. Belanger-Champagne^{an}, L. Bellantoni^{ax}, A. Bellavance^{ax}, J.A. Benitez^{bm}, S.B. Beri^z, G. Bernardi^p, R. Bernhard^v, L. Berntzonⁿ, I. Bertram^{ap}, M. Besançon^q, R. Beuselinck ^{aq}, V.A. Bezzubov ^{al}, P.C. Bhat ^{ax}, V. Bhatnagar ^z, C. Biscarat ^s, G. Blazey ^{az},
F. Blekman ^{aq}, S. Blessing ^{aw}, D. Bloch ^r, K. Bloom ^{bo}, A. Boehnlein ^{ax}, D. Boline ^{bj}, T.A. Bolton ^{bg}, G. Borissov^{ap}, K. Bos^{ag}, T. Bose^{by}, A. Brandt^{bz}, R. Brock^{bm}, G. Brooijmans^{br}, A. Bross^{ax}, D. Brown^{bz}, N.J. Buchanan^{aw}, D. Buchholz^{ba}, M. Buehler^{cc}, V. Buescher^u, S. Burdin^{ap}, S. Burke^{as}, T.H. Burnett^{cd}, C.P. Buszello^{aq}, J.M. Butler^{bj}, P. Calfayan^x, S. Calvetⁿ, J. Cammin^{bs}, S. Caron^{ag}, W. Carvalho^c, B.C.K. Casey^{by}, N.M. Cason^{bc}, H. Castilla-Valdez^{af}, S. Chakrabarti^q, D. Chakraborty ^{az}, K.M. Chan ^{bc}, K. Chan ^e, A. Chandra ^{av}, F. Charles ^r, E. Cheu ^{as}, F. Chevallier ^m, D.K. Cho^{bj}, S. Choi^{ae}, B. Choudhary^{aa}, L. Christofek^{by}, T. Christoudias^{aq}, S. Cihangir^{ax}, D. Claes^{bo}, C. Clément^{an}, B. Clément^r, Y. Coadou^e, M. Cooke^{cb}, W.E. Cooper^{ax}, M. Corcoran^{cb}, F. Couderc^q, M.-C. Cousinouⁿ, S. Crépé-Renaudin^m, D. Cutts^{by}, M. Ćwiok^{ac}, H. da Motta^b, A. Das ^{bj}, G. Davies ^{aq}, K. De ^{bz}, S.J. de Jong ^{ah}, P. de Jong ^{ag}, E. De La Cruz-Burelo ^{bl}, C. De Oliveira Martins^c, J.D. Degenhardt^{bl}, F. Déliot^q, M. Demarteau^{ax}, R. Demina^{bs}, D. Denisov ^{ax}, S.P. Denisov ^{al}, S. Desai ^{ax}, H.T. Diehl ^{ax}, M. Diesburg ^{ax}, A. Dominguez ^{bo}, H. Dong ^{bt}, L.V. Dudko ^{ak}, L. Duflot ^o, S.R. Dugad ^{ab}, D. Duggan ^{aw}, A. Duperrin ⁿ, J. Dyer ^{bm}, A. Dyshkant ^{az}, M. Eads ^{bo}, D. Edmunds ^{bm}, J. Ellison ^{av}, V.D. Elvira ^{ax}, Y. Enari ^{by}, S. Eno ^{bi}, P. Ermolov ^{ak}, H. Evans ^{bb}, A. Evdokimov ^{bu}, V.N. Evdokimov ^{al}, A.V. Ferapontov ^{bg}, T. Ferbel ^{bs}, F. Fiedler ^x, E. Ellison ^{av}, M. E. L. S. Elvira ^{ax}, M. E. Evans ^{bb}, A. Evdokimov ^{bu}, V.N. Evdokimov ^{al}, A.V. Ferapontov ^{bg}, T. Ferbel ^{bs}, F. Fiedler ^x, E. Ellison ^{av}, M. E. L. S. Elvira ^{ax}, M. E. Elvira ^{ax}, M. E. Elvira ^{ax}, M. E. Elvira ^{ax}, M. E. Elvira ^{bb}, S. Eno ^{bi}, P. Ermolov ^{ak}, E. Elvira ^{bb}, A. Evdokimov ^{bu}, V.N. Evdokimov ^{al}, A.V. Ferapontov ^{bg}, T. Ferbel ^{bs}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, E. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, S. Eno ^{bi}, F. Fiedler ^x, E. Elvira ^{by}, F. Fiedler ^x, E. Elvira ^x, F. Fiedler ^x, F. Fie F. Filthaut^{ah}, W. Fisher^{ax}, H.E. Fisk^{ax}, M. Ford^{ar}, M. Fortner^{az}, H. Fox^v, S. Fu^{ax}, S. Fuess^{ax}, T. Gadfort^{cd}, C.F. Galea^{ah}, E. Gallas^{ax}, E. Galyaev^{bc}, C. Garcia^{bs}, A. Garcia-Bellido^{cd}, V. Gavrilov^{aj}, P. Gay¹, W. Geist^r, D. Gelé^r, C.E. Gerber^{ay}, Y. Gershtein^{aw}, D. Gillberg^e, G. Ginther^{bs}, N. Gollub^{an}, B. Gómez^g, A. Goussiou^{bc}, P.D. Grannis^{bt}, H. Greenlee^{ax}, Z.D. Greenwood ^{bh}, E.M. Gregores ^d, G. Grenier ^s, Ph. Gris¹, J.-F. Grivaz ^o, A. Grohsjean ^x, S. Grünendahl^{ax}, M.W. Grünewald^{ac}, J. Guo^{bt}, F. Guo^{bt}, P. Gutierrez^{bw}, G. Gutierrez^{ax}, A. Haas^{br}, N.J. Hadley^{bi}, P. Haefner^x, S. Hagopian^{aw}, J. Haley^{bp}, I. Hall^{bw}, R.E. Hall^{au}, L. Han^f,

K. Hanagaki^{ax}, P. Hansson^{an}, K. Harder^{ar}, A. Harel^{bs}, R. Harrington^{bk}, J.M. Hauptman^{be}, R. Hauser^{bm}, J. Hays^{aq}, T. Hebbeker^t, D. Hedin^{az}, J.G. Hegeman^{ag}, J.M. Heinmiller^{ay}, A.P. Heinson^{av}, U. Heintz^{bj}, C. Hensel^{bf}, K. Herner^{bt}, G. Hesketh^{bk}, M.D. Hildreth^{bc}, R. Hirosky^{cc}, J.D. Hobbs^{bt}, B. Hoeneisen^k, H. Hoeth^y, M. Hohlfeld^u, S.J. Hong^{ad}, R. Hooper^{by}, S. Hossain^{bw} P. Houben^{ag}, Y. Hu^{bt}, Z. Hubacekⁱ, V. Hynek^h, I. Iashvili^{bq}, R. Illingworth^{ax}, A.S. Ito^{ax}, S. Jabeen^{bj}, M. Jaffré^o, S. Jain^{bw}, K. Jakobs^v, C. Jarvis^{bi}, R. Jesik^{aq}, K. Johns^{as}, C. Johnson^{br}, M. Johnson^{ax}, A. Jonckheere^{ax}, P. Jonsson^{aq}, A. Juste^{ax}, D. Käfer^t, S. Kahn^{bu}, E. Kajfaszⁿ, A.M. Kalinin^{ai}, J.R. Kalk^{bm}, J.M. Kalk^{bh}, S. Kappler^t, D. Karmanov^{ak}, J. Kasper^{bj}, P. Kasper^{ax}, I. Katsanos^{br}, D. Kau^{aw}, R. Kaur^z, V. Kaushik^{bz}, R. Kehoe^{ca}, S. Kermicheⁿ, N. Khalatyan^{al}, A. Khanov^{bx}, A. Kharchilava^{bq}, Y.M. Kharzheev^{ai}, D. Khatidze^{br}, H. Kim^{ae}, T.J. Kim^{ad}, M.H. Kirby^{ah}, M. Kirsch^t, B. Klima^{ax}, J.M. Kohli^z, J.-P. Konrath^v, M. Kopal^{bw}, V.M. Korablev^{al}, B. Kothari^{br}, A.V. Kozelov^{al}, D. Krop^{bb}, A. Kryemadhi^{cc}, T. Kuhl^w, A. Kumar^{bq}, S. Kunori^{bi}, A. Kupco^j, T. Kurča^s, J. Kvita^h, F. Lacroix¹, D. Lam^{bc}, S. Lammers^{br}, G. Landsberg^{by}, J. Lazoflores^{aw}, P. Lebrun^s, W.M. Lee^{ax}, A. Leflat^{ak}, F. Lehner^{ao}, J. Lellouch^p, V. Lesne¹, J. Leveque^{as}, P. Lewis^{aq}, J. Li^{bz}, Q.Z. Li^{ax}, L. Li^{av}, S.M. Lietti^d, J.G.R. Lima^{az}, D. Lincoln^{ax}, J. Linnemann^{bm}, V.V. Lipaev^{al}, R. Lipton ^{ax}, Y. Liu^f, Z. Liu^e, L. Lobo ^{aq}, A. Lobodenko ^{am}, M. Lokajicek^j, A. Lounis^r, P. Love ^{ap}, H.J. Lubatti ^{cd}, A.L. Lyon ^{ax}, A.K.A. Maciel^b, D. Mackin ^{cb}, R.J. Madaras ^{at}, P. Mättig^y, C. Magass^t, A. Magerkurth^{bl}, N. Makovec^o, P.K. Mal^{bc}, H.B. Malbouisson^c, S. Malik^{bo}, V.L. Malyshev^{ai}, H.S. Mao^{ax}, Y. Maravin^{bg}, B. Martin^m, R. McCarthy^{bt}, A. Melnitchouk^{bn}, A. Mendesⁿ, L. Mendoza^g, P.G. Mercadante^d, M. Merkin^{ak}, K.W. Merritt^{ax}, J. Meyer^u, A. Meyer^t, M. Michaut^q, T. Millet^s, J. Mitrevski^{br}, J. Molina^c, R.K. Mommsen^{ar}, N.K. Mondal^{ab}, R.W. Moore^e, T. Moulik^{bf}, G.S. Muanza^s, M. Mulders^{ax}, M. Mulhearn^{br}, O. Mundal^u, L. Mundim^c, E. Nagyⁿ, M. Naimuddin^{ax}, M. Narain^{by}, N.A. Naumann^{ah}, H.A. Neal^{bl}, J.P. Negret^g, P. Neustroev^{am}, H. Nilsen^v, A. Nomerotski^{ax}, S.F. Novaes^d, T. Nunnemann^x, V. O'Dell^{ax}, D.C. O'Neil^e, G. Obrant^{am}, C. Ochando^o, D. Onoprienko^{bg}, N. Oshima^{ax}, J. Osta^{bc}, R. Otecⁱ, G.J. Otero y Garzón ^{ay}, M. Owen ^{ar}, P. Padley ^{cb}, M. Pangilinan ^{by}, N. Parashar ^{bd}, S.-J. Park ^{bs}, S.K. Park ^{ad}, J. Parsons ^{br}, R. Partridge ^{by}, N. Parua ^{bb}, A. Patwa ^{bu}, G. Pawloski ^{cb}, B. Penning ^v, P.M. Perea av, K. Peters ar, Y. Peters y, P. Pétroff o, M. Petteni aq, R. Piegaia a, J. Piper bm, M.-A. Pleier^u, P.L.M. Podesta-Lerma^{af}, V.M. Podstavkov^{ax}, Y. Pogorelov^{bc}, M.-E. Pol^b, P. Polozov^{aj}, A. Pompoš^{bw}, B.G. Pope^{bm}, A.V. Popov^{al}, C. Potter^e, W.L. Prado da Silva^c, H.B. Prosper^{aw}, S. Protopopescu^{bu}, J. Qian^{bl}, A. Quadt^u, B. Quinn^{bn}, A. Rakitine^{ap}, M.S. Rangel^b, K.J. Rani^{ab}, K. Ranjan^{aa}, P.N. Ratoff^{ap}, P. Renkel^{ca}, S. Reucroft^{bk}, P. Rich^{ar}, M. Rijssenbeek^{bt}, I. Ripp-Baudot^r, F. Rizatdinova^{bx}, S. Robinson^{aq}, R.F. Rodrigues^c, C. Royon^q, P. Rubinov^{ax}, R. Ruchti^{bc}, G. Safronov^{aj}, G. Sajot^m, A. Sánchez-Hernández^{af}, M.P. Sanders^p, A. Santoro^c, G. Savage^{ax}, L. Sawyer^{bh}, T. Scanlon^{aq}, D. Schaile^x, R.D. Schamberger^{bt}, Y. Scheglov^{am}, H. Schellman^{ba}, P. Schieferdecker^x, T. Schliephake^y, C. Schmitt^y, C. Schwanenberger^{ar}, A. Schwartzman^{bp}, R. Schwienhorst^{bm}, J. Sekaric^{aw}, S. Sengupta^{aw}, H. Severini^{bw}, E. Shabalina^{ay}, M. Shamim^{bg}, V. Shary^q, A.A. Shchukin^{al}, R.K. Shivpuri^{aa}, D. Shpakov^{ax}, V. Siccardi^r, V. Simakⁱ, V. Sirotenko^{ax}, P. Skubic^{bw}, P. Slattery^{bs}, D. Smirnov^{bc}, R.P. Smith^{ax}, J. Snow^{bv}, G.R. Snow^{bo}, S. Snyder^{bu}, S. Söldner-Rembold^{ar}, L. Sonnenschein^p, A. Sopczak^{ap}, M. Sosebee^{bz}, K. Soustruznik^h, M. Souza^b, B. Spurlock^{bz}, J. Stark^m, J. Steele^{bh}, V. Stolin^{aj}, A. Stone^{ay}, D.A. Stoyanova^{al}, J. Strandberg^{bl}, S. Strandberg^{an}, M.A. Strang^{bq}, M. Strauss^{bw}, E. Strauss^{bt}, R. Ströhmer^x, D. Strom^{ba}, M. Strovink^{at}, L. Stutte^{ax}, S. Sumowidagdo^{aw}, P. Svoisky^{bc}, A. Sznajder^c, M. Talbyⁿ, P. Tamburello^{as}, A. Tanasijczuk^a, W. Taylor^e, P. Telford^{ar}, J. Temple^{as}, B. Tiller^x, F. Tissandier¹, M. Titov^q, V.V. Tokmenin^{ai}, M. Tomoto^{ax}, T. Toole^{bi}, I. Torchiani^v,

T. Trefzger^w, D. Tsybychev^{bt}, B. Tuchming^q, C. Tully^{bp}, P.M. Tuts^{br}, R. Unalan^{bm}, S. Uvarov^{am}, L. Uvarov^{am}, S. Uzunvan^{az}, B. Vachon^e, P.J. van den Berg^{ag}, B. van Eijk^{ag}, R. Van Kooten^{bb}. W.M. van Leeuwen^{ag}, N. Varelas^{ay}, E.W. Varnes^{as}, A. Vartapetian^{bz}, I.A. Vasilyev^{al}, M. Vaupel^y, P. Verdier^s, L.S. Vertogradov^{ai}, M. Verzocchi^{ax}, F. Villeneuve-Seguier^{aq}, P. Vint^{aq}, P. Vokacⁱ, E. Von Toerne^{bg}, M. Voutilainen^{bo}, M. Vreeswijk^{ag}, R. Wagner^{bp}, H.D. Wahl^{aw}, L. Wang^{bi}, M.H.L.S. Wang ax, J. Warchol bc, G. Watts cd, M. Wayne bc, M. Weber ax, G. Weber w, H. Weerts bm A. Wenger^v, N. Wermes^u, M. Wetstein^{bi}, A. White^{bz}, D. Wicke^y, G.W. Wilson^{bf}, S.J. Wimpenny^{av}, M. Wobisch^{bh}, D.R. Wood^{bk}, T.R. Wyatt^{ar}, Y. Xie^{by}, S. Yacoob^{ba}, R. Yamada^{ax}, M. Yan^{bi}, T. Yasuda^{ax}, Y.A. Yatsunenko^{ai}, K. Yip^{bu}, H.D. Yoo^{by}, S.W. Youn^{ba}, J. Yu^{bz}, C. Yu^m, A. Yurkewicz^{bt}, A. Zatserklyaniy^{az}, C. Zeitnitz^y, D. Zhang^{ax}, T. Zhao^{cd}, B. Zhou^{bl}, J. Zhu^{bt}, M. Zielinski^{bs}, D. Zieminska^{bb}, A. Zieminski^{bb}, L. Zivkovic^{br}, V. Zutshi^{az}, E.G. Zverev^{ak} ^a Universidad de Buenos Aires, Buenos Aires, Argentina ^b LAFEX, Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil ^c Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil ^d Instituto de Física Teórica, Universidade Estadual Paulista, São Paulo, Brazil ^e University of Alberta, Edmonton, Alberta, and Simon Fraser University, Burnaby, British Columbia, and York University, Toronto, Ontario, and McGill University, Montreal, Quebec, Canada ^f University of Science and Technology of China, Hefei, People's Republic of China ^g Universidad de los Andes, Bogotá, Colombia ^h Center for Particle Physics, Charles University, Prague, Czech Republic ⁱ Czech Technical University, Prague, Czech Republic ^j Center for Particle Physics, Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic ^k Universidad San Francisco de Quito, Quito, Ecuador ¹ Laboratoire de Physique Corpusculaire, IN2P3-CNRS, Université Blaise Pascal, Clermont-Ferrand, France ^m Laboratoire de Physique Subatomique et de Cosmologie, IN2P3-CNRS, Universite de Grenoble 1, Grenoble, France ⁿ CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France ^o Laboratoire de l'Accélérateur Linéaire, IN2P3-CNRS et Université Paris-Sud, Orsay, France ^p LPNHE, IN2P3-CNRS, Universités Paris VI and VII, Paris, France ^q DAPNIA/Service de Physique des Particules, CEA, Saclay, France ^r IPHC, Université Louis Pasteur et Université de Haute Alsace, CNRS, IN2P3, Strasbourg, France ^s IPNL, Université Lyon 1, CNRS/IN2P3, Villeurbanne, and Université de Lyon, Lyon, France t III. Physikalisches Institut A, RWTH Aachen, Aachen, Germany ^u Physikalisches Institut, Universität Bonn, Bonn, Germany ^v Physikalisches Institut, Universität Freiburg, Freiburg, Germany ^w Institut für Physik, Universität Mainz, Mainz, Germany ^x Ludwig-Maximilians-Universität München, München, Germany ^y Fachbereich Physik, University of Wuppertal, Wuppertal, Germany ^z Paniab University, Chandigarh, India ^{aa} Delhi University, Delhi, India ^{ab} Tata Institute of Fundamental Research, Mumbai, India ac University College Dublin, Dublin, Ireland ^{ad} Korea Detector Laboratory, Korea University, Seoul, Republic of Korea

ae SungKyunKwan University, Suwon, Republic of Korea

af CINVESTAV, Mexico City, Mexico

^{ag} FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands

ah Radboud University Nijmegen/NIKHEF, Nijmegen, The Netherlands

^{ai} Joint Institute for Nuclear Research, Dubna, Russia

^{aj} Institute for Theoretical and Experimental Physics, Moscow, Russia

^{ak} Moscow State University, Moscow, Russia

^{al} Institute for High Energy Physics, Protvino, Russia

am Petersburg Nuclear Physics Institute, St. Petersburg, Russia

^{an} Lund University, Lund,

and Royal Institute of Technology and Stockholm University, Stockholm,

and Uppsala University, Uppsala, Sweden

ao Physik Institut der Universität Zürich, Zürich, Switzerland

^{ap} Lancaster University, Lancaster, United Kingdom

^{aq} Imperial College, London, United Kingdom

ar University of Manchester, Manchester, United Kingdom

as University of Arizona, Tucson, AZ 85721, USA ^{at} Lawrence Berkeley National Laboratory and University of California, Berkeley, CA 94720, USA ^{au} California State University, Fresno, CA 93740, USA av University of California, Riverside, CA 92521, USA ^{aw} Florida State University, Tallahassee, FL 32306, USA ax Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ay University of Illinois at Chicago, Chicago, IL 60607, USA ^{az} Northern Illinois University, DeKalb, IL 60115, USA ba Northwestern University, Evanston, IL 60208, USA bb Indiana University, Bloomington, IN 47405, USA bc University of Notre Dame, Notre Dame, IN 46556, USA bd Purdue University Calumet, Hammond, IN 46323, USA be Iowa State University, Ames, IA 50011, USA ^{bf} University of Kansas, Lawrence, KS 66045, USA ^{bg} Kansas State University, Manhattan, KS 66506, USA ^{bh} Louisiana Tech University, Ruston, LS 71272, USA bi University of Maryland, College Park, MD 20742, USA bj Boston University, Boston, MA 02215, USA bk Northeastern University, Boston, MA 02115, USA ^{bl} University of Michigan, Ann Arbor, MI 48109, USA bm Michigan State University, East Lansing, MI 48824, USA ^{bn} University of Mississippi, University, MS 38677, USA bo University of Nebraska, Lincoln, NE 68588, USA bp Princeton University, Princeton, NJ 08544, USA ^{bq} State University of New York, Buffalo, NY 14260, USA br Columbia University, New York, NY 10027, USA bs University of Rochester, Rochester, NY 14627, USA bt State University of New York, Stony Brook, NY 11794, USA ^{bu} Brookhaven National Laboratory, Upton, NY 11973, USA ^{bv} Langston University, Langston, OK 73050, USA bw University of Oklahoma, Norman, OK 73019, USA bx Oklahoma State University, Stillwater, OK 74078, USA by Brown University, Providence, RI 02912, USA bz University of Texas, Arlington, TX 76019, USA ca Southern Methodist University, Dallas, TX 75275, USA ^{cb} Rice University, Houston, TX 77005, USA ^{cc} University of Virginia, Charlottesville, VA 22901, USA ^{cd} University of Washington, Seattle, WA 98195, USA

Received 7 June 2007

Available online 27 June 2007

The measurement of the inclusive isolated photon cross section published in our recent Letter [1] requires a correction for two effects: an increase in the reported integrated luminosity and an adjustment to the estimation of the energy response of the calorimeter to photons.

The instantaneous luminosity at DØ is measured by counting the number of inelastic collisions that produce charged particles within the acceptance of the luminosity monitor [2]. The determination of the luminosity has recently been improved through studies of the multiplicities observed in the luminosity monitor [3]. These studies indicated that the fraction of observable inelastic collisions was overestimated in our previous analysis [4]. We have also added corrections for the time dependence of the luminosity counter efficiencies. The result of these improvements is to increase the assessment of the total integrated luminosity for this analysis by 16.7% to $380 \pm 23 \text{ pb}^{-1}$ and to decrease the estimated uncertainty from 6.5% to 6.1%.

The energy response of the calorimeter to photons was calibrated using electrons from Z boson decays. Photons and electrons shower differently in matter, and photon energies needed to be shifted down, as we indicated in the Letter. However, this shift was estimated considering only direct photons. As shown in Fig. 4 of the Letter, the fraction of photons at low p_T that are true direct photons is only $\approx 40\%$. The background photons, primarily from π^0 or η meson decays, have a softer energy distribution than signal photons which results in a smaller reconstructed p_T . The total average p_T shift of the photon candidates with respect to the true photon p_T has been determined by weighting signal and background events according to the photon purity (Fig. 4 of the Letter). As compared with the p_T shift estimated for pure direct photons [5], the new estimate leads to about 3.6% p_T correction for the first bin with $\langle p_T^{\gamma} \rangle \simeq 24 \text{ GeV}$, about 2% at $\langle p_T^{\gamma} \rangle \simeq 40 \text{ GeV}$ and less than 1% for $p_T^{\gamma} \ge 60 \text{ GeV}$.

DOI of original article: 10.1016/j.physletb.2006.04.048.

^{*} Corresponding author.

E-mail address: bandurin@fnal.gov (D.V. Bandurin).

Table 1

The measured differential cross section for the production of isolated photons, averaged over $|\eta| < 0.9$, in bins of p_T^{γ} . $\langle p_T^{\gamma} \rangle$ is the average p_T^{γ} within each bin. The columns $\delta\sigma_{\text{stat}}$ and $\delta\sigma_{\text{syst}}$ represent the statistical and systematic uncertainties, respectively

p_T^{γ}	$\langle p_T^{\gamma} \rangle$	$d^2\sigma/dp_T^{\gamma}d\eta$	$\delta\sigma_{\rm stat}$	$\delta\sigma_{ m syst}$
(GeV)	(GeV)	(pb/GeV)	(%)	(%)
23-25	24.1	4.19×10^2	0.1	23
25-30	27.1	2.22×10^2	0.1	19
30-34	31.8	1.00×10^{2}	0.2	16
34–39	36.1	5.30×10^1	0.2	15
39–44	41.2	2.85×10^{1}	0.3	14
44-50	46.7	1.51×10^1	0.4	13
50-60	54.2	7.38×10^0	0.4	13
60-70	64.3	3.14×10^{0}	0.6	13
70-80	74.4	1.54×10^0	0.9	12
80–90	84.4	8.37×10^{-1}	1.3	12
90-110	98.2	3.91×10^{-1}	1.4	12
110-130	118	1.48×10^{-1}	2.3	12
130-150	139	$6.76 imes 10^{-2}$	3.5	13
150-170	159	2.80×10^{-2}	5.6	13
170-200	183	1.43×10^{-2}	6.5	14
200-230	213	6.27×10^{-3}	9.8	14
230-300	255	1.54×10^{-3}	13	15

The inclusive isolated photon cross section has been recalculated including both luminosity and p_T scale corrections. They are presented in Table 1 and compared with a NLO pQCD calculation [6] in Fig. 1. The new correction factors have similar magnitude but opposite effect at low p_T so the cross section does not change significantly. At high p_T , however, the p_T scale correction is minimal so the average cross section drops by 15%. This results in a stretching of the shape between low and high p_T compared to the measurement published in the Letter.

In general, NLO QCD predictions agree with the data taking into account the total experimental and theoretical uncertainties. However, the data-to-theory ratio has a shape similar to that seen by the UA2 [7] and CDF [8] experiments. It is also suggestive of the shapes expected from extensions to NLO pQCD that incorporate the effects of soft gluon resummation [9–11].

Acknowledgements

We thank the staffs at Fermilab and collaborating institutions, and acknowledge support from the DOE and NSF (USA); CEA and CNRS/IN2P3 (France); FASI, Rosatom and

Fig. 1. The ratio of the measured cross section to the theoretical predictions from JETPHOX. The full vertical lines correspond to the overall uncertainty while the inner line indicates just the statistical uncertainty. The dashed lines represent the change in the cross section when varying the theoretical scales by factors of two. The shaded region indicates the uncertainty in the cross section estimated with CTEQ6.1 PDF.

RFBR (Russia); CAPES, CNPq, FAPERJ, FAPESP and FUN-DUNESP (Brazil); DAE and DST (India); Colciencias (Colombia); CONACyT (Mexico); KRF and KOSEF (Korea); CON-ICET and UBACyT (Argentina); FOM (The Netherlands); Science and Technology Facilities Council (United Kingdom); MSMT and GACR (Czech Republic); CRC Program, CFI, NSERC and WestGrid Project (Canada); BMBF and DFG (Germany); SFI (Ireland); The Swedish Research Council (Sweden); CAS and CNSF (China); Alexander von Humboldt Foundation; and the Marie Curie Program.

References

- [1] V.M. Abazov, et al., DØ Collaboration, Phys. Lett. B 639 (2006) 151.
- [2] V.M. Abazov, et al., DØ Collaboration, Nucl. Instrum. Methods Phys. Res. A 565 (2006) 463.
- [3] T. Andeen, et al., FERMILAB-TM-2365-E, 2007.
- [4] T. Edwards, et al., FERMILAB-TM-2278-E, 2004.
- [5] J.A. Appel, et al., UA2 Collaboration, Phys. Lett. B 176 (1986) 239.
- [6] T. Binoth, et al., Eur. Phys. J. C 16 (2000) 311;
 S. Catani, et al., JHEP 0205 (2002) 028.
- [7] J. Alitti, et al., UA2 Collaboration, Phys. Lett. B 263 (1991) 544.
- [8] D. Acosta, et al., CDF Collaboration, Phys. Rev. D 65 (2002) 112003.
- [9] G. Sterman, W. Vogelsang, Phys. Rev. D 71 (2005) 014013.
- [10] L. Apanasevich, et al., Phys. Rev. D 59 (1999) 074007.
- [11] A.V. Lipatov, N.P. Zotov, J. Phys. G 34 (2007) 219.