Striking Behaviour of Photoneutron Cross Sections for ⁹⁰Zr near Threshold*

H. Utsunomiya¹, S. Goriely², H. Akimune¹, T. Yamagata¹, T. Kondo¹,
C. Iwamoto¹, O. Itoh¹, M. Kamata¹, M. Io¹, K. Kususe¹, T. Teramoto¹, H. Harada³,
F. Kitatani³, S. Goko⁴, H. Toyokawa⁵, K. Yamada⁵, and Y.-W. Lui⁶

 ¹Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501, Japan
 ²Institut d'Astronomie et d'Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP-226, 1050 Brussels, Belgium
 ³Japan Atomic Energy Agency, Tokai-mura, Naka, Ibaraki 319-1195, Japan
 ⁴Department of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
 ⁵National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
 ⁶Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA

A photon difference technique was employed to examine a minute behaviour of photoneutron cross sections for ⁹⁰Zr near neutron threshold with laser Compton scattering (LCS) γ -ray beams at the National Institute of Advanced Industrial Science and Technology. The maximum energy of the LCS γ -ray beam was changed in 50 - 200 keV steps from 12135 to 12890 keV near threshold at 11970 keV. Figure 1 shows the present data of photoneutron cross sections for ⁹⁰Zr in comparison with the previous data [1,2]. The cross sections above 12300 keV are in good agreement with the data of Ref. [1], while the data of Ref. [2] do not show such a rapid fall. A striking feature is that there is a significant strength just above the neutron threshold, suggesting the presence of resonance states. They are possibly $3P_{3/2}$ wave neutron resonances that predominantly manifest themselves around A = 90, as predicted by the valence model [3].

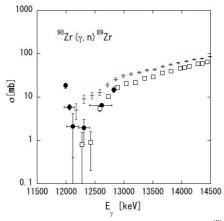


Figure 1: Photoneutron cross sections for ⁹⁰Zr

* This work is supported by the Japan Private School Promotion Foundation and the Konan-ULB bilateral project. S.G. acknowledges support from FNRS.

- [1] B.L. Berman et al., Phys. Rev. 162, 1098 (1967).
- [2] A. Lepretre et al., Nucl. Phys. A175, 609 (1971).
- [3] J.E. Lynn, The Theory of Neutron Resonance Reactions (Clarendon, Oxford, 1968).