Application of the **ySF** Method to Palladium*

H. Utsunomiya¹, S. Goriely², I. Daoutidis², H. Akimune¹, T. Yamagata¹, T. Kondo¹, C. Iwamoto¹, M. Kamata¹, O. Itoh¹, H. Harada³, F. Kitatani³, S. Goko⁴, H. Toyokawa⁵, K. Yamada⁵, Y.-W. Lui⁶, S. Hilaire⁷, and A.J. Koning⁸

 ¹Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501, Japan
²Institut d'Astronomie et d'Astrophysique, Universite Libre de Bruxelles, Campus de la Plaine, CP-226, 1050 Brussels, Belgium
³Japan Atomic Energy Agency, Tokai-mura, Naka, Ibaraki 319-1195, Japan
⁴Department of Engineering, Hokkaido University, Sapporo 060-8628, Japan.
⁵National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
⁶Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
⁷CEA, DAM, DIF, F-91297 Arpajon, France
⁸Nuclear Research and Consultancy Group, P.O. Box 25, NL-1755 ZG Petten, The Netherlands

The γ -ray strength function (γ SF) method [1] is applied to palladium isotopes with a focus on indirect determination of radiative neutron capture cross sections for a radioactive nucleus ¹⁰⁷Pd with T_{1/2} = 6.5×10^6 y. Photoneutron cross sections were measured near neutron threshold for ^{108,106,105}Pd nuclei with laser Compton scattering γ rays at the National Institute of Advanced Industrial Science and Technology. The experimental cross section is compared with the statistical model calculations based on the TALYS code making use of different E1 γ -ray strength prescriptions including the Hybrid model [2] and two versions of the mean field plus QRPA model, namely the non-relativistic HFB plus QRPA calculation of [3] and the relativistic mean field plus continuum QRPA (RMF+cQRPA) calculation of [4]. We compare the model predictions from different γ SF models for ¹⁰⁸Pd(γ ,n)¹⁰⁷Pd and ¹⁰⁷Pd(n, γ)¹⁰⁸Pd cross section with experimental data. A recommendation is given to predictions with the Hybrid and RMF+cQRPA models of the γ SF in an application of the γ SF method to ^{108,106,105}Pd.

- [1] H. Utsunomiya et al., this conference.
- [2] S. Goriely, Phys. Lett. B436, 10 (1998).
- [3] S. Goriely, E. Khan, and M. Samyn, Nucl. Phys. A739, 331 (2004).
- [4] J. Daoutidis, P.Ring, Phys. Rev. C 80, 024309 (2009).

^{*} The present study includes the result of "Study on nuclear data by using a high intensity pulsed neutron source for advanced nuclear system" entrusted to Hokkaido University by the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT). This work is partly supported by the Japan Private School Promotion Foundation and the Konan-ULB bilateral project. S.G. acknowledges support from FNRS.