Structure of Neutron-rich Calcium Isotopes and Roles of Three-body Interaction

<u>Toshio Suzuki</u>¹, Takaharu Otsuka^{2,3}

¹ Department of Physics, Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan.

² Department of Physics, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

³ Center for Nuclear Study, University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, and

RIKEN, Hirosawa, Wako-shi, Saitama 351-0198, Japan.

Structure of neutron-rich calcium isotopes are studied by shell model calculations with the use of microscopic two-body and three-body interactions. Microscopic G-matrix elements with core polarization effects [1] are used for the two-nucleon interaction. The Fujita-Miyazawa force [2] induced by Δ -isobar-hole excitations is included as the dominant part of the three-nucleon interaction. We found the following important roles of the three-body force on the structure of exotic nuclei. The three-body interaction can solve several serious problems in nuclear structure inherent in the microscopic two-body interactions.

The three-body force induces repulsive contributions to the monopole terms of the valence neutron-neutron interaction. The need for the repulsive components in the isospin T=1monopole terms in phenomenological interactions such as GXPF1 [3] in the pf-shell can be naturally explained.

Ground state energies of the isotopes, which have deviations from the experimental values near drip-lines only with the two-body interaction, are found to be well reproduced up to the observed ones when the three-body interaction is included. This is quite similar to the case of oxygen isotopes, where the three-body interaction is found to be important to explain why the drip-line of oxygen isotopes is ²⁴O and the isotopes with neutron number N \geq 17 do not exist [4].

Besides the monopoles, we further investigate the effects of the contributions of the threebody force to the multipole terms of the valence two-nucleon matrix elements. We discuss the effects on the energy levels of the Ca isotopes as well as the O isotopes. We discuss also the excitation energies of the 2_1^+ states in Ca isotopes, and show that those in ⁴⁸Ca and ⁵⁴Ca are enhanced with the inclusion of the three-body interaction. The three-body force thus plays a key role for the magicity of ⁴⁸Ca and ⁵⁴Ca. Similar results are obtained with the use of microscopic V_{lowk} two-nucleon interaction and chiral 3N nucleon interaction [5].

The magnetic dipole (M1) strength in 48 Ca is fragmented in case with the microscopic twobody interaction only. The strength is found to be concentrated and pushed up to higher excitation energy when the three-body interaction is included. An important role of the multipole components is pointed out for the concentration of the strength. The single-particle structure of 48 Ca is reproduced with the inclusion of the three-body interaction.

We will also show that the three-body interaction improves the agreement of the calculated ground state energies of helium isotopes with the observation.

- [1] M.H. Jensen, T.T.S. Kuo and E. Osnes, Phys. Rept. 261, 125 (1995).
- [2] J. Fujita and H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957).
- [3] M. Honma et al., Phys. Rev. C 65, 061301 (2002); Phys. Rev. C 69, 034335 (2004).
- [4] T. Otsuka, T. Suzuki, J.D. Holt, A. Schwenk and Y. Akaishi, to be published.
- [5] J.D. Holt, T. Otsuka, A. Schwenk and T. Suzuki, in preparation.