Structure of neutron-rich calcium isotopes are studied by shell model calculations with the use of microscopic two-body and three-body interactions. Microscopic G-matrix elements with core polarization effects [1] are used for the two-nucleon interaction. The Fujita-Miyazawa force [2] induced by ∆-isobar-hole excitations is included as the dominant part of the three-nucleon interaction. We found the following important roles of the three-body force on the structure of exotic nuclei. The three-body interaction can solve several serious problems in nuclear structure inherent in the microscopic two-body interactions.

The three-body force induces repulsive contributions to the monopole terms of the valence neutron-neutron interaction. The need for the repulsive components in the isospin T=1 monopole terms in phenomenological interactions such as GXPF1 [3] in the pf-shell can be naturally explained.

Ground state energies of the isotopes, which have deviations from the experimental values near drip-lines only with the two-body interaction, are found to be well reproduced up to the observed ones when the three-body interaction is included. This is quite similar to the case of oxygen isotopes, where the three-body interaction is found to be important to explain why the drip-line of oxygen isotopes is 24O and the isotopes with neutron number $N \geq 17$ do not exist [4].

Besides the monopoles, we further investigate the effects of the contributions of the three-body force to the multipole terms of the valence two-nucleon matrix elements. We discuss the effects on the energy levels of the Ca isotopes as well as the O isotopes. We discuss also the excitation energies of the 2^+ states in Ca isotopes, and show that those in 48Ca and 54Ca are enhanced with the inclusion of the three-body interaction. The three-body force thus plays a key role for the magicity of 48Ca and 54Ca. Similar results are obtained with the use of microscopic V_{lowk} two-nucleon interaction and chiral 3N nucleon interaction [5].

The magnetic dipole (M1) strength in 48Ca is fragmented in case with the microscopic two-body interaction only. The strength is found to be concentrated and pushed up to higher excitation energy when the three-body interaction is included. An important role of the multipole components is pointed out for the concentration of the strength. The single-particle structure of 48Ca is reproduced with the inclusion of the three-body interaction.

We will also show that the three-body interaction improves the agreement of the calculated ground state energies of helium isotopes with the observation.