Preparation for the measurement of the ${}^{12}C(\alpha,\gamma){}^{16}O$ reaction at TRIAC*

H. Makii¹, H. Miyatake², Y.X. Watanabe², N. Imai², H. Ishiyama², Y. Hirayama², K. Niki²,

M. Okada², S.C. Jeong², S. Chiba¹, S.Mitsuoka¹, K. Nishio¹, Y. Wakabayashi¹

¹ Advanced Science Research Center, Japan Atomic Energy Agency(JAEA), Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195, Japan.

² Institute of Particle and Nuclear Studies, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan.

The ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction plays an important role in stellar evolution at the stage of heliumburning. Its reaction cross section determines the mass fraction of ${}^{12}C$ and ${}^{16}O$, the abundance distribution of the elements between oxygen and iron, and the iron-core mass before the supernova explosion [1]. Therefore, it is quite important to accurately determine the cross section at center-of-mass energy $E_{\rm c.m.} = 0.3$ MeV. The direct measurement of the cross section at $E_{\rm c.m.} =$ 0.3 MeV, however, is not possible using current experimental technique, because the cross section is too small, around 10^{-17} barn. Hence, one has to derive the cross section by extrapolating a measured cross section at $E_{\rm c.m.} \ge 1.0$ MeV into the range of stellar temperature. However, the estimated cross section at $E_{\rm c.m.} = 0.3$ MeV still has a large uncertainty mainly due to the poor determination of the ratio of E2 cross section to E1 one, σ_{E2}/σ_{E1} .

Recently, we have succeeded in determining the σ_{E2}/σ_{E1} with small statistical and systematic uncertainties by using high efficiency anti-Compton NaI(Tl) spectrometers to detect a γ -ray from the reaction with a large S/N ratio, intense pulsed α -beams to discriminate true events from background events due to neutron from ${}^{13}C(\alpha, n){}^{16}O$ reaction with a time-of-flight (TOF) method, and monitoring system of target thickness [2, 3].

In order to provide a stringent constraint to extrapolation down to $E_{\rm c.m.} = 0.3$ MeV additional data is crucial. Hence we are now preparing a new measurement at TRIAC (Tokai Radioactive Ion Accelerator Complex). TRIAC can accelerate heavy ions (q/A > 1/10) from 2keV/u to 1.1 MeV/u with 26 MHz Split Coaxial RFQ (SCRFQ) and 52 MHz Interdigital-H (IH) linac. Since the SCRFQ has a radio frequency of 26 MHz, the bunch interval becomes 38.5 ns. On the other hand, the bunch interval is required to be that of 250 ns or more for removing a background events due to neutrons with the TOF method. Therefore we have installed the pre-buncher, coupled to a multilayer chopper, with a variable frequency of 2-4 MHz upstream of the SCRFQ. In this presentation we will report the results of the beam test using α beam and the plan for new experiment on ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction.

* This work is supported by Grant-in-Aid for Scientific Research from the Japan Ministry of Education, Calture, Sports, Science, and Technology.

- [1] T.A. Weaver and S.E. Woosley, Phys. Rep. 227, 65 (1993).
- [2] H. Makii *et al.*, Nucl. Instr. and Meth. **A547**, 411 (2005).
- [3] H. Makii *et al.*, Phys. Rev. C **80**, 065802 (2009).