Onset of collectivity in Neutron-Rich iron isotopes: Toward a new island of inversion?

1CEA Saclay, IRFU, Service de Physique Nucléaire, F-91191 Gif-sur-Yvette, France
2GANIL, CEA/DSM-CNRS/IN2P3, Bd Henri Becquerel, BP 55027, F-14076 Caen, France
3CSNSM, CNRS/IN2P3, F-91405 Orsay, France
4Department of Physics, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway
5CEA, DAM, DIF, F-91297 Arpajon, France
6Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany
7Instituto de Fisica Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain
8Institut de Physique Nucléaire, CNRS/IN2P3-Université Paris-Sud, F-91406 Orsay, France
9Dipartimento di Fisica dell’Università and INFN Sezione di Padova, I-35131 Padova, Italy
10IPHC, CNRS/IN2P3 and Université Louis Pasteur, F-67037 Strasbourg, France
11Departamento de Física Teórica, IFT-AM/CSIC, Universidad Autónoma, E-28049 Madrid, Spain
12INFN, Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy
13Heavy Ion Laboratory, Warsaw University, Warsaw, PL-02097, Poland

The lifetimes of the first excited 2^+ states in 62Fe and 64Fe have been measured for the first time using the recoil-distance Doppler shift technique. A 238U beam of 6.5 AMeV impinged on 64Ni target, and the target like products were slowed down by degrader foil positioned at micrometer distance downstream of the target and identified in the VAMOS spectrometer on an event-by-event basis. The lifetimes were then determined from the intensities of the degraded and fully Doppler shifted components of the $2^+ \rightarrow 0^+$ transition detected in EXOGAM detectors positioned at backward angles.

The resulting lifetimes show a steep increase of the B(E2) values of the first excited 2^+ state from 62Fe to 64Fe. A comparison with shell model calculations shows that the onset of collectivity is related to the occupation of neutron intruder orbitals. The large B(E2) value for 64Fe is only reproduced if the valence space includes both the neutron $g_{9/2}$ and $d_{5/2}$ orbitals. The transition from spherical 68Ni to more proton-deficient N 40 isotones has some similarity with the island of inversion around 32Mg. The developing quadrupole collectivity can in both cases be related to the occupation of neutron intruder orbitals which are at the same time quasi-SU(3) partners: $(f_{7/2}, p_{3/2})$ for 32Mg and $(g_{9/2}, d_{5/2})$ for the neutron-rich Fe.

Figure 1: $B(E2; 2_1^+ \rightarrow 0_1^+)$ values for neutron-rich iron isotopes. Values from this work are shown in black. New shell-model calculations clearly show the importance of the $g_{9/2}$ intruder orbital and its $d_{5/2}$ quadrupole partner.