Neutron-rich ^{62,64,66}Fe show enhanced Collectivity: The Washout of N=40 in Terms of Experiment, Valence Proton Symmetry and Shell Model

<u>W. Rother¹</u>, A. Dewald¹, H. Iwasaki^{2,3}, S. Lenzi⁴, K. Starosta⁵, D. Bazin², T. Baugher^{2,3}, A. Brown^{2,3}, H. Crawford^{2,3}, C. Fransen¹, A. Gade^{2,3}, T. Ginter^{2,3}, T. Glasmacher^{2,3}, G. F. Grinyer², M. Hackstein¹, G. Ilie⁶, J. Jolie¹, S. McDaniel^{2,3}, B. Melon⁷, G. Pascovici¹, P. Petkov^{1,8}, Th. Pissulla¹, A. Ratkiewicz^{2,3}, C. A. Ur⁴, P. Voss^{2,3}, K. Walsh^{2,3}, D. Weisshaar^{2,3}, and K.O. Zell¹
¹Institut für Kernphysik der Universität zu Köln, 50937 Köln, Germany ²NSCL, MSU, East Lansing, Michigan 48824, USA
³Department of Physics and Astronomy, MSU, East Lansing, Michigan 48824, USA
⁴Dipartimento di Fisica dell' Università and INFN, Sezione di Padova, Padova, Italy
⁵Department of Chemistry, Simon Fraser University, Burnaby BC V5A 1S6, Canada ⁶WNSL, Yale University, New Haven, Connecticut 06520, USA, and National Institute of Physics and Nuclear Engineering, 76900 Bucharest, Romania
⁷Dipartimento di Fisica, Università di Firenze and INFN, Sesto Fiorentino, 50019, Italy
⁸Institute for Nuclear Research and Nuclear Energy, BAS, 1784 Sofia, Bulgaria

Probing shell structure at a large neutron excess has been of particular interest in recent times. Neutron-rich nuclei between the proton shell closures Z=20 and Z=28 offer an exotic testing ground for shell evolution. The development of the N=40 gap between neutron fp and $1g_{9/2}$ shells gives rise to highly interesting variations of collectivity for nuclei in this region.

While ⁶⁸Ni shows doubly magic properties in level energies and transition strengths, this was not observed in neighbouring nuclei. Especially neutron-rich Fe isotopes proved particularly resistent to calculational approaches using the canonical valence space (fpg) resulting in important deviations of the predicted collectivity. Only an inclusion of the $d_{5/2}$ -orbital could solve the problem [1]. Hitherto no transition strengths for ⁶⁶Fe have been reported.

We determined $B(E2, 2^+_1 \rightarrow 0^+_1)$ values from lifetimes measured with the recoil distance Doppler-shift method using the Cologne plunger for radioactive beams at National Superconducting Cyclotron Laboratory at Michigan State University. Excited states were populated by projectile Coulomb excitation for ^{62,64,66}Fe.

The data show a rise in collectivity for Fe isotopes toward N=40. Results are interpreted by means of a modified version of the Valence Proton Symmetry [2] and compared to scale shell model calculations using a new effective interaction recently developed for the *fpgd* valence space.

[1] E. Caurier *et al.*, Eur. Phys. J A15, 145 (2002)

[2] A. Dewald et al., Phys. Rev. C 78, 051302(R) (2008).