²He Decay from ¹⁸Ne Excited States: Status and Perspectives

Elisa Rapisarda^{1,2}, G. Cardella², M. De Napoli⁴, F. Giacoppo ⁴ G. Raciti³, C. Sfienti ^{2,3}

¹ Centro Siciliano di Fisica Nucleare e Struttura della Materia, Via S. Sofia 64, Catania, Italy.

² INFN - Sezione di Catania, Via S. Sofia 64, Catania, Italy.

We will report on the first experimental evidence for diproton emission from the 6.15 MeV 18 Ne (1⁻) level. The secondary 18 Ne beam was produced using the in-flight FRIBs facility of the Laboratori Nazionali del Sud in Catania. 18 Ne levels were populated by Coulomb excitation on a nat Pb target. Several levels were identified in the excitation energy spectrum built by kinematic reconstruction from the 17 F+p and 16 O+2p fully measured decay events. The study of the relative momentum and angle correlation of the two protons, analysed in the excitation energy window $5.9 < E^* < 6.5$ MeV, clearly disentangles the diproton and democratic or virtual sequential decay mechanisms contributions to the 2p emission. Moreover, in the 16 O+2p decay channel the population of high-lying known and unknown states in 18 Ne Coulomb excitation was observed[1]. New analysis on data obtained in a recent experiment seems to indicate the possibility that correlated two protons emission occurs in such states despite the predominant democratic or true sequential three-body mechanism. This observation provide new hints for the interpretation of the phenomenon.

[1] G. Raciti et al., Phys. Rev. Lett. 100, 192503 (2008).

³ Dipartimento di Fisica e Astronomia, Universit di Catania, Via S. Sofia 64, Catania, Italy.
⁴ INFN - Laboratori Nazionali del Sud, Via S. Sofia 62, Catania, Italy.