1n-removal reactions around N=20 shell closure C. Nociforo¹, A. Prochazka^{1,2}, R. Kanungo³, B. A. Brown⁴, T. Aumann¹, D. Boutin², D. Cortina-Gil⁵, B. Davids⁶, M. Diakaki⁷, F. Farinon^{1,2}, H. Geissel¹, R. Gernhäuser⁸, J. Gerl¹, R. Janik⁹, B. Jonson¹⁰, B. Kindler¹, R. Knöbel^{1,2}, R. Krücken⁸, M. Lantz¹⁰, H. Lenske², Yu.A. Litvinov¹, K. Mahata¹, P. Maeirbeck⁸, A. Musumarra^{11,12}, T. Nilsson¹⁰, T. Otsuka¹³, C. Perro³, C. Scheidenberger^{1,2}, B. Sitar⁹, P. Strmen⁹, B. Sun², I. Szarka⁹, I. Tanihata¹⁴, Y. Utsuno¹⁵, H. Weick¹, M. Winkler¹. ¹GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany ²Justus-Liebig University, Gießen, Germany ³Astronomy and Physics Department, Saint Mary's University, Halifax, Canada ⁴NSCL, Michigan state University, East Lansing, USA ⁵Universidad de Santiago de Compostela, Santiago de Compostella, Spain ⁶TRIUMF, Vancouver, Canada ⁷National Technical University, Athens, Greece ⁸Physik Department E12, Technische Universität München, Garching, Germany ⁹Faculty of Mathematics and Physics, Comenius University, Bratislava, Slovakia ¹⁰Fundamental Physics, Chalmers University of Technology, Göteborg, Sweden ¹¹Università di Catania, Catania, Italy ¹²INFN-Laboratori Nazionali del Sud, Catania, Italy ¹³Center for Nuclear Study, University of Tokyo, Saitama, Japan ¹⁴Research Center for Nuclear Physics, Osaka, Japan ¹⁵Japan Atomic Energy Agency, Tokai, Ibaraki, Japan. The evolution of the configuration mixing in the ground state of the pf shell Al isotopes as a function of the neutron number have been studied through the longitudinal momentum distribution analysis of the residues in 1n-removal reactions at relativistic energies. The experiment [1] was performed by using radioactive ion beams produced inflight at the Fragment Separator (FRS) of GSI in order to investigate a wide region of the nuclear chart overlapping with the so called Island of Inversion, around N=20. The new data presented here have been described within an eikonal model. Their interpretation will be discussed comparing the results of theoretical calculations in the sd-shell and sdpf-shell model spaces. Concerning the odd-mass Al isotopes (N=20,22), dominated by the unpaired $d_{5/2}$ proton, an influence of core polarization effects as a function of the neutron number is expected. For the even mass Al (N=21,23), information on the occupied orbital of the unpaired neutron can be extracted on the basis of shell model predictions. [1] R. Kanungo, et al. Phys, Lett. **B685**, 253(2010).