Lifetime measurements of low-lying states in neutron-rich Zn isotopes by the plunger technique

M. Niikura^{*1}, B. Mouginot^{*1}, F. Azaiez^{*1}, G. Angelis^{*2}, M. Assie^{*3}, P. Bednarczyk^{*4}, C. Borcea^{*5}, A. Burger^{*6}, G. Burgunder^{*3}, A. Buta^{*5}, L. Caceres^{*3}, M. Catalin^{*5}, E. Clément^{*3}, L. Coquard^{*7}, G. De France^{*3}, F. de Oliveira^{*3}, A. Dewald^{*8}, A. Dijon^{*3}, Z. Dombradi^{*9}, E. Fiori^{*10}, S. Franchoo^{*1}, C. Fransen^{*8}, G. Friessner^{*8}, L. Gaudefroy^{*11}, G. Georgiev^{*10}, S. Grevy^{*3}, M. Hackstein^{*8}, M. Harakeh^{*3}, F. Ibrahim^{*1}, R. Lozeva^{*10}, A. Maj^{*4}, I. Matea^{*1}, O. Möller^{*7}, S. Myalski^{*4}, F. Negoita^{*5}, D. Pantelica^{*5}, L. Perrot^{*1}, T. Pissula^{*8}, F. Rotaru^{*5}, W. Rother^{*8}, J. A. Scarpaci^{*1}, I. Stefan^{*1}, C. Stodel^{*3}, J. C. Thomas^{*3}, P. Ujic^{*3}, M. Umiecik^{*4}, D. Verney^{*1}

*1 IPN Orsay IN2P3-CNRS, *2 LNL INFN, *3 GANIL, *4 IF PAN, *5 NIPNE,
*6 University of Oslo, *7 IKP TU Darmstadt, *8 IKP Universität zu Köln, *9 ATOMKI,
*10 CSNSM IN2P3-CNRS, *11 DAM CEA

One of the most critical ingredients in determining the disappearance or appearance of magicity in nuclei far from stability is the evolution of single-particle energies with increasing neutron or proton numbers when moving away from the valley of stability. The three known cases of disappearance of shell effects at N=8, 20 and 28 in neutron-rich nuclei are understood as due to the effect of the tensor part of the nucleon-nucleon interaction. The tensor force is held responsible for the strong attraction between a proton and a neutron in spin-flip partner orbits. A recent generalization of such mechanism foresees a similar behavior also for orbitals with non-identical orbital angular momenta. It is expected that orbitals with anti-parallel angular momenta attract each other and orbitals with parallel angular momenta repulse each other.

In this context neutron-rich nuclei in the vicinity of ⁷⁸Ni are particularly interesting since they allow to search for anomalies when compared with shell-model predictions. It is predicted, for example, that the Z=28 gap for protons in the *pf*-shell becomes smaller when moving from N=40 to 50 as a consequence of the attraction between the proton $f_{5/2}$ and neutron $g_{9/2}$ orbits and the repulsion between the proton $f_{7/2}$ and the neutron $g_{9/2}$ states. The same argument would also predict a weakening of the N=50 shell gap when depleting the proton $f_{5/2}$ state upon approaching the ⁷⁸Ni nucleus, due to the diminished attraction between the neutron $f_{9/2}$ and the proton $f_{5/2}$ orbits and the reduced repulsion between the neutron $g_{9/2}$ and the proton $f_{5/2}$ states.

In order to investigate the shell evolution in the vicinity of ⁷⁸Ni we have performed lifetime measurements for low-lying states in ⁷²⁻⁷⁴Zn by the differential plunger technique. A cocktail beam of ^{73,74}Zn was produced by the projectile-fragmentation reaction of ⁷⁶Ge on a ⁹Be target and separated by the first half of the LISE spectrometer at GANIL. The secondary beam with the energy of 34 MeV/nucleon was bombarding on a secondary CD₂ target to induce inelastic and transfer reactions, and outgoing particles were selected and identified by the second half of LISE. Gamma rays emitted from the reaction products were detected by 8 EXOGAM detectors, which were surrounding secondary target at 45 and 135 degrees relative to the beam direction. The differential plunger technique with ⁹Be degrader was applied to measure lifetimes of excited states.

The first results of the lifetime measurement in low-lying states in 72,73,74 Zn will be reported together with the comparison to results from Coulomb excitation experiments at REX-ISOLDE and GANIL. A picture of the low-energy structure in these isotopes towards the middle of the $vg_{9/2}$ orbital will be given via: i) identification of the levels populated with inelastic scattering reaction and ii) determination, in a model-independent way, of the transition probabilities of those levels towards the ground state.