Monopole-effects on symmetric and antisymmetric couplings of protons and neutrons

D. Mücher1, E. Elhami2, M. T. McEllistrem2, C. Fransen3, M. Gorska4, S. Heinze1, J. Jolie3, R. Krücken1, A. Linnemann3, S. Mukhopadhyay2, M. Scheck5, S. W. Yates2

1Physics Department E12, TU Munich, James Frack Str, 85748 Garching, Germany
2Department of Chemistry and Department of Physics and Astronomy, University of Kentucky, Lexington, Kentucky 40506 - 0055 USA
3Institute for Nuclear Physics, Cologne University, Zülpicher Str. 77, 50937 Köln, Germany
4Gesellschaft für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt, Germany
5Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE, United Kingdom

As a general feature of two-fluid quantum systems, excited states in atomic nuclei can be constructed in a proton-neutron symmetric or mixed-symmetric way. In near vibrational nuclei the building block of mixed-symmetric states is the one-phonon quadrupole-collective isovector valence-shell excitation $2^+_1\text{ms}[1]$. In a most simple picture, such states can be understood to be generated by mixing unperturbed proton and neutron phonons via the residual proton-neutron interaction [2]. Therefore the study of mixed-symmetric states delivers direct information on the residual proton-neutron interaction in the valence shell and provides a tool to explore the evolution of the residual interaction towards e.g. extreme values of isospin.

In the framework of the generalized seniority scheme we present a simple expression for the valence proton-neutron interaction V_{pn} in atomic nuclei near closed shells consisting of a monopole and a quadrupole term. The monopole component of the residual interaction is approximated by double differences of binding energies only. We show that the energetic splitting between the lowest lying $J^\pi=2^+$ states of symmetric and mixed-symmetric character in even-A nuclei is well reproduced in almost all experimentally known cases (see Fig. 1 for one example), including nuclei where the effective number of valence particles is put to zero at subshells. The only free parameter, the quadrupole strength parameter κ turns out to be surprisingly constant in the mass region $A=50$ to $A=150$, yielding a good approximation for absolute values of V_{pn} near closed shells. We show applications on new data from neutron scattering with monoenergetic neutrons on the nuclei $^{68,70}\text{Zn}$ where an unusual abrupt drop in the excitation energy of the mixed-symmetric components is found towards the possible subshell at $N=40$. We draw conclusions on the minimal repelling of the lowest-lying symmetric and mixed-symmetric 2^+_1 states in even-A nuclear systems.