High accuracy ${}^{18}O(p,a){}^{15}N$ reaction rate in the $8 \ 10^6 - 5 \ 10^9$ K temperature range

M. La Cognata^{1,2}, C. Spitaleri^{1,2}, A. Mukhamedzhanov³, A. Banu³, S. Cherubini^{1,2}, A. Coc⁴,
V. Crucillà^{1,2}, V. Goldberg³, M. Gulino¹, B. Irgaziev⁵, G. G. Kiss^{1,2}, L. Lamia^{1,2}, J. Mrazek⁶,
R. G. Pizzone^{1,2}, S. M. R. Puglia^{1,2}, G. G. Rapisarda^{1,2}, S. Romano^{1,2}, M. L. Sergi^{1,2}, G. Tabacaru³, L. Trache³, R. E. Tribble³, W. Trzaska⁷, A. Tumino^{1,8}

¹INFN – Laboratori Nazionali del Sud

²DMFCI – Università di Catania, Catania, Italy

³Cyclotron Institute – Texas A&M University, College Station, TX, USA

⁴CSNSM CNRS/IN2P3, Université Paris Sud, Orsay, France

⁵GIK – Institute of Engineering Sciences and Technology, Topi District, Pakistan

⁶Nuclear Physics Institute of ASCR, Rez near Prague, Czech Republic

⁷Physics Department, University of Jyvaskyla, Finland

⁸Università degli studi di Enna "Kore," Enna, Italy

The ¹⁸O(p, α)¹⁵N reaction is of great importance in several astrophysical scenarios, as it influences the production of key isotopes such as ¹⁹F, ¹⁸O and ¹⁵N. Fluorine is synthesized in the intershell region of asymptotic giant branch stars, together with s-elements, by radiative capture on ¹⁵N, which in turn is produced in the ¹⁸O proton-induced destruction [1]. Peculiar ¹⁸O abundances are observed in R-Coronae Borealis stars, having ¹⁶O/¹⁸O <1, hundreds of times smaller than the galactic value. In the framework of the double degenerate scenario, a quantitative account of such abundances can be provided if H-rich material is ingested and the ¹⁸O(p, α)¹⁵N(p, α)¹²C chain is activated, thus reducing ¹⁸O overproduction [2]. Finally, there is no explanation of the ¹⁴N/¹⁵N ratio in presolar grains formed in the outer layers of asymptotic giant branch stars. Again, such an isotopic ratio is influenced by the ¹⁸O(p, α)¹⁵N reaction that might increase the ¹⁵N yield during non-convective mixing episodes [3].

In this work, a high accuracy ¹⁸O(p, α)¹⁵N reaction rate is proposed, based on the simultaneous fit of direct measurements and the results of a new Trojan horse experiment (see [4] for a description of the method). Indeed, current determinations are uncertain because of the poor knowledge of the resonance parameters of key levels of ¹⁹F. A key role is played by the 20 keV resonance in the ¹⁸O(p, α)¹⁵N cross section, whose strength has been recently determined in a novel THM approach [5]. Moreover, we focus on the study of the broad 660 keV 1/2+ resonance corresponding to the 8.65 MeV level of ¹⁹F. Since Γ =100-300 keV, it determines the low-energy tail of the resonant contribution to the cross section and dominates the cross section at higher energies. Here we provide a factor 2 larger reaction rate above T=0.5 10⁹ K based over our new improved determination of its resonance parameters, which could strongly influence present-day astrophysical model predictions [6].

[1] M. Lugaro et al., Astrophys. J. 615, 934 (2004)

[2] G.C. Clayton et al., Astrophys. J. 662, 1220 (2007)

[3] K.M. Nollett et al., Astrophys. J. 582, 1036 (2003)

[4] C. Spitaleri et al., Phys. Rev. C 69, 055806 (2004)

[5] M. La Cognata et al., Astrophys. J. 708, 796 (2010)

[6] M. La Cognata et al., submitted to the Astrophysical Journal