Gamow-Teller Transitions Starting from $T_z=+3/2$ Nucleus $^{47}\mathrm{Ti}$ E. Ganioğlu¹, H. Fujita², Y. Fujita², T. Adachi³, A. Algora⁴, M. Csatlos⁵, J. Deaven⁶, E. Estevez⁴, C. Guess⁶, J. Gulyás⁵, K. Hatanaka³, K. Hirota³, D. Ishikawa³, A. Krasznahorkay⁵, H. Matsubara³, R. Meharchand⁶, F. Molina⁴, H. Okamura³, Y. Oktem¹, H.J. Ong³, G. Perdikakis⁶, B. Rubio⁴, C. Scholl⁷, G. Susoy¹, T. Suzuki³, A. Tamii³, J. Thies⁸, R.G.T. Zegers⁶, J. Zenihiro³ ¹Department of Physics, Istanbul University, Istanbul 34134, Turkey ²Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan ³Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan ⁴Instituto de Física Corpuscular, CSIC-Universidad de Valencia, E-46071 Valencia, Spain ⁵Institute of Nuclear Research of the Hungarian Academy of Sciences P.O.Box 51, H-4001 Debrecen, Hungary ⁶NSCL, Michigan State University, East Lansing, Michigan 48824-1321, USA ⁷Institut für Kernphysik, Universität zu Köln, 50937 Köln, Germany ⁸Institut für Kernphysik, Westfälische Wilhelms-Universität, D-48149 Münster, Germany Gamow-Teller (GT) transition, caused by the $\sigma\tau$ -type interaction, is the most popular weak process in nuclei. It is of interest not only in nuclear physics, but also in astrophysics. A high energy-resolution (3 He,t) experiment at Reseach Center for Nuclear Physics (RCNP), Osaka [1-4] was performed on the $T_z=+3/2$ nucleus 47 Ti at 0° and at an intermediate incident energy of 140 MeV/nucleon in order to study the precise GT transition strengths to the final $T_z=+1/2$ nucleus 47 V. Owing to the energy resolution of 20 keV achieved in the 47 V spectrum, individual GT transitions were observed [5]. It is known that the strength of each of these transitions is proportional to the GT transition strength B(GT) in the (3 He,t) reaction[6]. Since the "standard B(GT) value" was available from the β decay study of 47 V, B(GT) values were reliably derived up to higher excitations. - [1] T. Adachi et al., Phys. Rev. C 73, 024311 (2006). - [2] Y. Fujita, et al., Phys. Rev. Lett. 95, 212501 (2005). - [3] H. Fujita et al., Phys. Rev. C 75, 034310 (2007). - [4] L. Popescu et al., Phys. Rev. C 79, 064312 (2009). - [5] http://www.rcnp.osaka-u.ac.jp - [6] Y. Fujita, et al., Phys. Rev. C 75, 057305 (2007).