Measurements of ISGMR in Sn, Cd, and Pb isotopes and the asymmetry of nuclear matter incompressibility

M. Fujiwara¹, T. Li², D. Patel², U. Garg², G.P.A. Berg², Y. Liu², R. Marks², J. Matta², B.K. Nayak², P.V. Madhusudhana-Rao², A. Long², K. Sault², R. Talwar², H. Hashimoto¹, K. Nakanishi¹, S. Okumura¹, M. Yosoi¹, M. Ichikawa³, M. Itoh³, R. Matsuo³, T. Terazono³, M. Uchida⁴, Y. Iwao⁵, T. Kawabata⁵, T. Murakami⁵, H. Sakaguchi⁵, S. Terashima⁵, Y. Yasuda⁵, J. Zenihiro⁵, H. Akimune⁶, C. Iwamoto⁶, A. Okamoto⁶, K. Kawase⁷, T. Adachi⁸, and M.N. Harakeh^{8,9}

¹Research Center for Nuclear Physics, Osaka University, Osaka 567-0047, Japan

²JINA and Physics Department, University of Notre Dame, Notre Dame, Indiana 46556, USA

³Cyclotron and Radioisotope Center, Tohoku University, Sendai 980-8578, Japan

- ⁴Tokyo Institute of Technology, 2-12-1 O-Okayama, Tokyo 152-8550, Japan
- ⁵Department of Physics, Kyoto University, Kyoto 606-8502, Japan
- ⁶Department of Physics, Konan University, Hyogo 658-8501, Japan

⁷Advanced Photon Research Center, Japan Atomic Energy Agency, Kyoto 619-0215, Japan

⁸KVI, University of Groningen, NL-9747 AA Groningen, The Netherlands,

⁹GSI Helmholtzzentrum für Schwerionenforschung, D-64291 Darmstadt, Germany

The compression-mode isoscalar giant monopole resonance (ISGMR) has been studied in the Sn, Cd and Pb isotopes using inelastic scattering of 400 MeV α -particles at extreme forward angles, including 0°.We have obtained completely ``background-free" inelastic-scattering spectra for the Sn, Cd, and Pb isotopes for a wide angular and excitation-energy range. The various giant resonances excited with different transferred angular momenta were extracted by a multipole-decomposition analysis (MDA). It was found that the centroid energies of the ISGMR in Sn isotopes are significantly lower than the theoretical predictions. The K_{\tau} in the empirical expression for the nuclear incompressibility has been determined to be K_{\tau} = -550 ± 100 MeV. These numbers are consistent with values of K_{\tau} = -370 ± 120 MeV obtained from an analysis of the isotopic transport ratios in medium-energy heavy-ion reactions [2], K_{\tau} = -500⁺¹²⁰₋₁₀₀ MeV obtained from constraints placed by neutron-skin data from anti-protonic atoms across the mass table [3], and K_{\tau} = -500 ± 50 MeV obtained from theoretical calculations using different Skyrme interactions and relativistic mean field (RMF) Lagrangians [4].

Stringent constraints on interactions employed in nuclear structure calculations are obtained on the basis of the experimentally determined values for K_{∞} and K_{τ} . These parameters constrain as well the equation of state (EOS) of nuclear matter. However, a significant discrepancy still remains. The ISGMR positions in Sn and Cd isotopes are systematically lower than the predictions obtained on basis of K_{∞} determined from the ISGMR in ²⁰⁸Pb. This raises the question "why are Sn and Cd nuclei so soft?", an important problem that has to be solved [5]. For a clue to solve the problem, the exact positions of the ISGMR in ^{204, 206, 208}Pb have to be measured [6].

In this talk, we will review the current status of the experimental studies on the compressionmode giant resonances, and the possible implications for astrophysics and physics with exotic nuclei.

[1] T. Li et al., Phys. Rev. Lett. 99, 162503 (2007), and Phys. Rev. C 81, 034309 (2010).

[2] Lie-Wen Chen et al., Phys. Rev. C 80, 014322 (2009).

- [3] M. Centelles et al., Phys. Rev. Lett. 102, 122502 (2009).
- [4] H. Sagawa et al., Phys. Rev. C 76, 034327 (2007).

[5] J. Piekarewicz, J. Phys. G: Nucl. Part. Phys. 37, 064038 (2010).

[6] E. Khan, Phys. Rev. C 80, 011307 (2009).