Two-Neutron Excitations in Light Neutron Rich Nuclei Studied via the (¹⁸O,¹⁶O) Reaction at 84 MeV

<u>M. Cavallaro¹</u>, F.Cappuzzello^{1,2}, D.Carbone^{1,2}, A.Cunsolo^{1,2}, A.Foti^{2,3}, M.Bondì^{1,2}, G.Santagati^{1,2}, G.Taranto^{1,2}, C.Ruofu¹, R.Linares¹, F.Azaiez⁴, S.Franchoo⁴, M.Niikura⁴, J.Scarpaci⁴

¹Istituto Nazionale di Fisica Nucleare - LNS, Catania, Italy. ²Dipartimento di Fisica e Astronomia, Università di Catania, Catania, Italy. ³Istituto Nazionale di Fisica Nucleare - Sezione di Catania, Catania, Italy. ⁴CNRS - IN2P3 - Institut de Physique Nucléaire d'Orsay, Orsay, France.

A study of two-neutron excitations in ¹¹Be and ¹³B has been done by the (¹⁸O, ¹⁶O) transfer reaction at 84 MeV incident energy. This corresponds to about 10 times the Coulomb barrier and is safely low to reduce the influence of deep inelastic mechanism. In such conditions detailed information about nuclear structure can be cleanly accessed. In particular the (¹⁸O, ¹⁶O) reaction has been used to study the dynamical effects of pairing correlations in nuclei. Recently, the study of the ¹³C(¹⁸O, ¹⁶O)¹⁵C reaction at 84 MeV has shown the appearance of striking phenomena in the energy spectra of ¹⁵C connected with the transfer of the neutron pair. In the experiment performed at INFN-LNS (Italy) the ¹⁶O ejectiles has been momentum analyzed by the MAGNEX magnetic spectrometer. The achieved energy resolution (80 keV) has allowed to identify several known excited states in the reaction products. Thanks to the MAGNEX large energy acceptance (± 20%), excitation energy spectra has been produced for the first time up to 20 MeV. Angular distributions for the transitions to several states has been measured allowing to draw interesting conclusions on the role of pairing in the structure of ¹¹Be and ¹³B.