Beta-delayed Fission of ¹⁸⁰Tl

<u>Andrei Andreyev</u>^{1,2}, on behalf of the IS466 Collaboration and ISOLDE collaboration ¹University of the West of Scotland, Paisley, UK and ²IKS, KU Leuven, Belgium

Detailed studies of three decay modes (α , β^+ /EC and beta-delayed fission) of an extremely neutron-deficient isotope ¹⁸⁰Tl were performed at the mass separator ISOLDE (CERN). A novelty and key feature of this work was the production of a pure source of ¹⁸⁰Tl using Resonance Ionization Laser Ion Source (RILIS) of ISOLDE.

In total, approximately 1.4×10^6 alpha decays of ¹⁸⁰Tl were detected, which represents approximately 6% alpha-decay branch of this nucleus. Due to high statistics, detailed fine-structure alpha decay studies of ¹⁷⁶Au (a daughter of ¹⁸⁰Tl after α decay) and of excited states in ¹⁸⁰Hg, populated in the β^+ /EC decay of ¹⁸⁰Tl, were also performed.

The most surprising result of the experiment is the observation of the asymmetric fission fragments mass distribution of exotic nucleus ¹⁸⁰Hg (N/Z=1.25), produced after β^+ /EC decay of ¹⁸⁰Tl (see Figure). Interpretation of this interesting phenomenon will be presented based on the recently-developed 5-dimentional approach to fission by P. Möller et al [1].

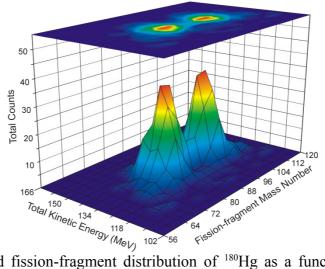


Figure 1: The derived fission-fragment distribution of ¹⁸⁰Hg as a function of the fragment mass and the total kinetic energy.

[1] P. Möller et al., Nuclear fission modes and fragment mass asymmetries in a fivedimensional deformation space, Nature 409, 785 (2001).