Single- α orbits and α condensation in ${}^{12}C$ and ${}^{11}B$

T. Yamada¹, Y. Funaki², P. Schuck³

¹ Laboratory of Physics, Kanto Gakuin University, Yokohama 236-8501, Japan

² Nishina Center for Accelerator-Based Science, The Institute of Physical and Chemical

Research (RIKEN), Wako 351-0098, Japan

³ Institut de Physique Nucléaire, 91406 Orsay Cedex, France

Four-nucleon correlation of the α -cluster type play an important role in nuclei. The idea of alpha-particle condensation in nuclei has attracted much interest theoretically and experimentally to clarify the exotic structure. The study of bosonic properties of α particles such as single- α orbits and occupation numbers in nuclei provide with a good tool to decide theoretically whether nuclear state is of alpha-particle condensate or not. In this paper bosonic properties of α particles in the 0⁺₂ state of ¹²C at $E_x=7.65$ MeV (Hoyle state) as well as the ground state (0⁺₁) are investigated with the semi-microscopic 3 α cluster model, 3 α Orthogonality Condition Model (OCM) [1]. They can be evaluated by solving the eigenvalue equation of the one-particle density matrix $\rho(r, r')$ derived from the total wave function of ¹²C.

The Hoyle state is found to have a dilute 3α structure characterized by the nuclear radius as large as about 4 fm, in which the α particle is occupied in a single S orbit with about 70% probability, and the radial behavior of the S orbit is similar to the S-wave Gaussian wave function with a very long tail. The momentum distribution of the α particle illustrates the δ -functionlike behavior, similar to the momentum distribution of dilute neutral atomic condensate states at very low temperature, a feature which eventually can be measured experimentally. These results give more theoretical evidence that the 0^+_2 state is a dilute 3α condensate [2]. On the other hand, the 0^+_1 state has a compact structure with a nuclear radius of 2.44 fm. The occupation probabilities of the α particles spread out over the S, D, and G orbits, amounting to about 30%, each, the results of which comes from the fact that the 0^+_1 state is characterized by the nuclear SU(3) wave function, $[f](\lambda\mu)=[444](04)$. The feature is much in contract with that of the 0^+_2 state.

It is interesting to explore a dilute cluster condensed state in ¹¹B. The recent experimental analysis of the ¹¹B(d,d') reaction showed that the third $3/2^-$ state at $E_x=8.56$ MeV has a $\alpha + \alpha + t$ cluster structure [3]. The $\alpha + \alpha + t$ OCM with the Gaussian basis was applied to study the structure of ¹¹B. It is found that the state has a loosely-coupled $\alpha + \alpha + t$ cluster structure with $R_{ms}=3.44$ fm, which is larger than that of the ground state ($R_{ms}=2.32$ fm). However, there is no significant concentration of the occupation number in single- α or single-t orbits like the 0^+_2 state of ¹²C. This is due to the fact that all of the relative orbital angular momentum between any two clusters in the $\alpha + \alpha + t$ system with $3/2^-$ is not S-wave. We found that the $1/2^+$ state around the $\alpha + \alpha + t$ threshold has a dilute $\alpha + \alpha + t$ structure with $R_{ms}=5.4$ fm, in which the alpha and triton particles are occupied in S-orbit with about 60% and 90% occupancies, respectively. Thus, the results indicate that the $1/2^+$ state is a counterpart of the Hoyle state of ¹²C. Recently, Sonic et al. [4] suggested in the ⁷Li(⁹Be, α^7 Li)⁵He experiment that the $1/2^+$ state at $E_x=12.5$ MeV (just above $\alpha + \alpha + t$ threshold) has a $\alpha + \alpha + t$ cluster structure with isospin T = 1/2. The state might correspond to our present state.

- [1] T. Yamada et al., Eur. Phys. J. A 26, 185 (2005).
- [2] A. Tohsaki et al., Phys. Rev. Lett. 87, 192501 (2001).
- [3] T. Kawabata et al., Phys. Lett. B 646, 6 (2007).
- [4] N. Sonic et al., Nucl. Phys. A742, 347 (2004).