## Structure of <sup>7</sup>He\*

<u>A. H. Wuosmaa<sup>1</sup></u>, K. E. Rehm<sup>2</sup>, J. P. Greene<sup>2</sup>, D. J. Henderson<sup>2</sup>, R. V. F. Janssens<sup>2</sup>, C. L.Jiang<sup>2</sup>, L.Jisonna<sup>3</sup>, J. C. Lighthall<sup>1</sup>, S. T. Marley<sup>1</sup>, E. F. Moore<sup>2</sup>, R. C. Pardo<sup>2</sup>, N. Patel<sup>4</sup>, M. Paul<sup>5</sup>, D. Peterson<sup>2</sup>, S. C. Pieper<sup>2</sup>, G. Savard<sup>2</sup>, J. P. Schiffer<sup>2</sup>, R. E. Segel<sup>3</sup>, R. H. Siemssen<sup>6</sup>, X. Tang<sup>2</sup>, R. B. Wiringa<sup>2</sup>

<sup>2</sup> Physics Division, Argonne National Laboratory, Argonne IL 60439, USA

<sup>3</sup> Physics Department, Northwestern University, Evanston IL, 60208, USA

<sup>4</sup> Physics Department, Colorado School of Mines, Golden, CO 80401, USA

<sup>5</sup> Hebrew University, Jerusalem, Israel 91904

<sup>6</sup> Kernfysich Versneller Instituut, 9747 AA Groningen, The Netherlands

The light, unbound nucleus <sup>7</sup>He provides an ideal laboratory to test modern *ab-initio* theories of nuclear structure. A number of earlier experiments have given conflicting information about the nature of the excited states of <sup>7</sup>He, in some cases in contradiction to theoretical expectations. Recent work from the ATLAS facility at Argonne National Laboratory suggested a broad  $1/2^{-1}$  first-excited state at 2.6 MeV [1]. The (*d*,*p*) reaction studied in [1] populates only the ground and first-excited  $1/2^{-1}$  states of <sup>7</sup>He. Complementary reactions must be studied to obtain information about other states, such as a possible  $5/2^{-1}$  level suggested by neutron pickup work with the (*p*,*d*) reaction [2]. We have studied the proton pickup reaction <sup>2</sup>H(<sup>8</sup>Li,<sup>3</sup>He)<sup>7</sup>He using a radioactive <sup>8</sup>Li beam from the "In-flight" facility at Argonne National Laboratory. This reaction is expected to populate the ground and second-excited  $5/2^{-1}$  states in <sup>7</sup>He. In combination with the earlier (*d*,*p*) work these data present a consistent picture of the low-lying level structure of <sup>7</sup>He.

Figure 1 shows Q-value spectra from the  ${}^{2}\text{H}({}^{8}\text{Li},{}^{3}\text{He})^{7}\text{He}$  reaction, requiring an identified  ${}^{6}\text{He}$  (a) or  ${}^{4}\text{He}$  (b) particle in coincidence with the  ${}^{3}\text{He}$ , signifying decays to the  ${}^{6}\text{He}$  ground or first-excited  $2^{+}$  state, respectively. In contrast to (d,p), the  $(d,{}^{3}\text{He})$  reaction populates an excited state that decays completely through the  ${}^{6}\text{He}(2^{+})$  excited state, as

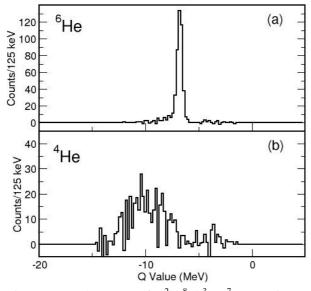



Figure 1. Q-value spectra for <sup>2</sup>H(<sup>8</sup>Li, <sup>3</sup>He)<sup>7</sup>He reaction.

expected for a  $5/2^{-1}$  resonance. Excitationenergy spectra, transfer angular distributions, and a comparison of the measured cross sections with the predictions of the Quantum Monte Carlo approach will be presented.

\* This work is supported by the U. S. Department of Energy, Office of Nuclear Physics under contract numbers DE-FG02-04ER41320 (WMU), DE-AC02-06CH11357 (ANL), and DE-FG02-98ER4106 (NU). [1] A. H. Wuosmaa *et al.*, Phys. Rev. C **72**, 061301(R) (2005).

[2] A. Korshinnenikov et al., Phys. Rev. Lett.
82, 3581 (1999); F. Skaza et al., Phys. Rev. C
73, 044301 (2006).