Enhanced photoneutron cross sections for zirconium isotopes near threshold: evidence for an M1 strength? *

H. Utsunomiya¹, S. Goriely², A. Makinaga¹, S. Goko¹, T. Kaihori¹, T. Yamagata¹,

H. Akimune¹, H. Toyokawa³, T. Matsumoto³, H. Harano³, Y.-W. Lui⁴ ¹ Department of Physics, Konan University, Japan

² Institut d'Astronomie et d'Astrophysique, Université Libre de Bruxelle, Belgium

³ National Institute of Advanced Industrial Science and Technology, Japan

⁴ Cyclotron Institute, Texas A & M University, USA

A systematic measurement of photoneutron cross sections was carried out for zirconium isotopes (A = 90, 91, 92, and 94) near neutron threshold with quasi-monochromatic γ rays produced from laser Compton backscattering at AIST. When compared with the threshold behavior of the E1 response, which is described by $\sigma(E_{\gamma}) = \sigma_0[(E_{\gamma} - S_n)/S_n]^{\ell+1/2}$ [1] with the neutron separation energy S_n and the orbital angular momentum of neutrons ℓ , the cross sections for 92,94 Zr exhibit large enhancements, whereas the cross sections for 90,91 Zr are rather consistent with the E1 response or much less enhanced. Note that the selection rule for neutron spin and parity allows only $\ell = 1$ for 91,92,94 Zr and $\ell = 0$ for 90 Zr.

The enhancement observed for 92,94 Zr amounts to about 1% of the entire cross section of GDR. The enhancement may be interpreted as (1) an extra E1 γ strength, (2) a spin-flip M1 strength, and (3) other E λ or M λ strength with $\lambda \geq 2$. It is noted that M1 resonance was previously reported in proton inelastic scattering for zirconium isotopes (A=90, 92, 94, and 96) in the 8 - 10 MeV region [2]. This may be attributed to a spin-flip transition from 1g_{9/2} to 1g_{7/2} over the N=50 shell gap with configuration mixing with 2p2h states [3]. The present enhancement found for 92,94 Zr may correspond to this type of M1 resonance. We remark that M1 resonance for 90 Zr reported in the proton inelastic scattering was unobservable in the present photoneutron cross-section measurement simply because it lies below the neutron threshold.

QRPA calculations are underway to study the collective nature of the enhancement observed for 92,94 Zr. So far we have found no extra E1 strength. We are currently exploring the second possibility, a spin-flip M1 strength. We discuss the origin of the enhancement.

* This work is supported by the Japan Private School Promotion Foundation.

- [1] E.P. Wigner, Phys. Rev. **73** (1948) 1002.
- [2] G.M. Crawley *et al.*, Phys. Rev. **C26** (1982) 87.
- [3] M. Yabe, F. Osterfeld and D. Cha, Phys. Lett. **178B** (1986) 5.