Recent results of the ${}^{12}C + {}^{12}C$ fusion reactions

T. Spillane¹, F. Raiola², F. Zeng³ H.W. Becker⁴, C. Bordeanu⁵, C. Rolfs², J. Schweitzer¹, F. Strieder², D. Schürmann², L. Gialanella⁶

¹ Department of Physics, University of Connecticut, Storrs, USA

² Experimentalphysik III, Ruhr Universität Bochum, Germany

³ Chinese Institute of Atomic Energy, Beijing, China

⁴ Fakultät für Physik und Astronomie, Ruhr Universität Bochum, Germany

 5 Horia Hulubei National Institute for Physics and Nuclear Engineering (IFIN-HH), Bukarest,

Romania

⁶ Dipartimento di Scienze Fisiche, Universita Federico II, Napoli and INFN, Napoli, Italy

The set of fusion reactions ${}^{12}\text{C} + {}^{12}\text{C}$ play a critical role in several astrophysical processes. Additionally, these reactions have long been both a subject of speculation and a test case for developments in nuclear structure. These developments include the theory quasi-molecular nuclei and very recent sub-barrier fusion hindrance. In a recent study, the fusion reactions ${}^{12}\text{C} + {}^{12}\text{C}$ have been studied at $\text{E}_{CM} = 2.10$ to 4.75 MeV by γ -ray spectroscopy using a C target of ultra-low hydrogen contamination. The deduced astrophysical $\tilde{S}(E)$ factor exhibits previously unknown resonances at $E \leq 3.0$ MeV, in particular a strong narrow resonance at E = 2.14 MeV, which lies at the high-energy tail of the Gamow peak. The implications of the results to astrophysics and nuclear structure are discussed.