Single-neutron states in ¹⁰¹Sn *

D. Seweryniak¹, M.P. Carpenter¹, S. Gros¹, A.A. Hecht², N. Hoteling², R.V.F. Janssens¹, T.L. Khoo¹, T. Lauritsen¹, C.J. Lister¹, G. Lotay³, D. Peterson¹, A.P. Robinson¹, W.B. Walters², X. Wang^{1,4}, P.J. Woods³, S. Zhu¹

¹Argonne National Laboratory, Argonne, Illinois 60439 USA.
²University of Maryland, College Park, Maryland 20742 USA.
³University of Edinburgh, Edinburgh, EH9 3JZ United Kingdom.
⁴University of Notre Dame, Notre Dame, IN 46556 USA.

Doubly-magic nuclei are the cornerstones of the nuclear landscape. Properties of nuclei such as ⁴⁸Ni, ⁷⁸Ni, ¹⁰⁰Sn and ¹³²Sn are essential for understanding the evolution of the nuclear structure far from the line of stability. Single-particle energies are important characteristics of doubly-magic nuclei and provide stringent tests of nuclear models.

A search for γ -ray transitions in ¹⁰¹Sn, which contains only one neutron outside the ¹⁰⁰Sn core, was carried out at the Argonne Tandem-Linac Accelerator System. ¹⁰¹Sn nuclei were produced using the ⁴⁶Ti(⁵⁸Ni,3n)¹⁰¹Sn reaction. Beta-delayed protons with energies and decay times consistent with previous ¹⁰¹Sn decay studies [1] were observed at the focal plane of the Fragment Mass Analyzer. In-beam γ rays were detected in the Gammasphere Gedetector array and were correlated with ¹⁰¹Sn β -delayed protons using the Recoil-Decay Tagging method. The resulting γ -ray spectrum is shown in Fig. 1 (left) along with the spectrum of γ rays randomly correlated with long-lived β -particles (right). A γ -ray line at 172 keV can be seen in the ¹⁰¹Sn spectrum, which is absent in the background spectrum. It was interpreted as the transition between the single-neutron vg_{7/2} and vd_{5/2} states. The measured vg_{7/2}-vd_{5/2} energy splitting will be compared with predictions of various mean-field potentials. It will be also used to calculate multi-neutron configurations in light Sn isotopes. Prospects of using this approach to other nuclei around ¹⁰⁰Sn will be discussed..

Figure 1: (left) γ rays tagged with ¹⁰¹Sn β -delayed protons. (right) Randomly correlated γ rays.

* This work was supported by the U.S. Department of Energy, Office of Nuclear Physics under contract No. DE-AC02-06CH11357.

[1] O. Kavatsyuk et al., Eur. Phys. J. A31, 319 (2007)