AGB fluorine nucleosyntesys studied by means of Trojan-horse method: the case of ${}^{15}N(p,\alpha){}^{12}C$

<u>R.G. Pizzone^{1,2}</u>, M. La Cognata^{1,2}, C. Spitaleri^{1,2}, R. Tribble³, L. Trache³, S. Cherubini^{1,2}, V. Crucillá^{1,2}, Changbo Fu³, V. Goldberg³, L. Lamia^{1,2}, A. Mukhamedzhanov³, S. Romano^{1,2}, G. Tabacaru³, A. Tumino^{1,2}, S. Typel⁴ and M. Wiescher⁵

¹Dipartimento di Metodologie Fisiche e Chimiche per l'Ingegneria - Università di Catania, Catania, Italy ²Laboratori Nazionali del Sud - INFN, Catania, Italy

³Cyclotron Institute, Texas A&M University, College Station, USA

⁴GSI, Darmstadt, Germany

⁵ Joint Institute of Nuclear Astrophysics, University of Notre Dame, USA

The astrophysically relevant ${}^{15}N(p,\alpha){}^{12}C$ has been investigated at very low sub-Coulomb energies down to 20 keV by means of the Trojan-horse Method [1,2,3] applied to the ${}^{2}H({}^{15}N,\alpha{}^{12}C)n$ reaction at $E_{beam}=60$ MeV. The reaction rate of this two-body process is considered among the primary sources of uncertainty in predicting the fluorine abundance in AGB stars [4,5], whose chemical evolution is strongly influenced by the reactions belonging to the production/destruction path of ¹⁹F. In particular, the ${}^{15}N(p,\alpha){}^{12}C$ reaction competes with the $^{18}O(p,\alpha)^{15}N$ reaction since it removes both protons and ^{15}N nuclei from ^{19}F production chain. The astrophysical S(E)-factor for the ${}^{15}N(p,\alpha){}^{12}C$ process was extracted by selecting the quasi free mechanism from the chosen ${}^{2}H({}^{15}N, \alpha{}^{12}C)n$ reaction, and compared to the direct data available down to 70 keV. A good agreement is found. Below 70 keV, where no direct data exist, the Trojan Horse S(E)-factor provides a rate which confirms that obtained through the extrapolation procedure. An independent R-matrix calculation has been performed in this relevant region, introducing also destructive interference terms between ¹⁶O levels with $J^{\pi}=1^{-}$. The novelty of this calculation is the introduction of the $J^{\pi}=1^{-}$ sub-threshold state at 9.585 MeV excitation energy. The result of the calculation strongly confirms the behavior of Trojan Horse data.

- [1] C. Spitaleri *et al.*, Phys. Rev. C **60**, 055802 (1999).
- [2] A. Tumino *et al.*, Phys. Rev. C **67**, 065803 (2003).
- [3] C. Spitaleri et al., Phys. Rev. C 69, 055806 (2004) and references therein.
- [4] M. La Cognata *et al.*, Eur. Phys. J. A, (2006) DOI:10.1140/epja/i2006-08-039-0.
- [5] M. Lugaro *et al.*, Ap. J. **615**, 934 (2004).
- [6] R.J. Stancliffe et al., arXiv :astro-ph/0504163v1.