U, Np, Pu and Am prompt fission neutron spectra

Vladimir M. Maslov

Joint Institute for Nuclear and Energy Research, 220109, Minsk-Sosny, Belarus.

Prompt fission neutron spectra (PFNS) components due to soft and hard pre-fission neutrons are evidenced in the shape of the measured PFNS data when interpreting prompt fission neutron spectra (PFNS) of 232 Th(n,F), 238 U(n,F), 235 U(n,F) and 239 Pu(n,F) reactions for $E_n \leq 20$ MeV [1,2]. That approach seems to be quite grounded to predict the PFNS of the $^{237}Np(n,F)$ and ²⁴¹Am(n,F) reactions, the pre-fission neutrons contribution being based on the consistent description of $^{237}Np(n,F)$ and $^{237}Np(n,2n)^{236s}Np$ and $^{241}Am(n,F)$ and $^{241}Am(n,2n)$ [3] reaction cross sections, respectively. Exclusive spectra of (n,xnf) pre-fission reaction neutrons were calculated with a Hauser-Feshbach statistical model and are strictly correlated with the emissive fission contributions to the observed fission cross sections. The lowering of PFNS average energy at $E_n \sim 5$ - 9 MeV, which is due to the pre-fission (n,nf) neutrons, is predicted to be correlated with emissive fission chances contribution. Similar dips are predicted for around E_n =10 - 15 MeV due to (n,2nf) pre-fission neutrons. Spectra of neutrons, evaporated from fission fragments, were approximated as a sum of two Watt' distributions. Though for major actinides PFNS $\langle E \rangle$ of previous and present approach may look similar (at least up to (n,2nf) reaction thresholds), our predictions of PFNS for ²³⁹Pu(n,F) are drastically discrepant with previous estimates, in which pre-fission neutron emission was represented by simple evaporation from a highly excited compound nucleus. In general, $\langle E \rangle$ of PFNS of ²³²Th(n,F), ²³⁸U(n,F), ²³⁵U(n,F) and ²³⁹Pu(n,F) appear to be systematically shifted to higher values, so that Th fission fragments look least heated, while those of Pu - most heated. The average energy of the Th, U and Pu PFNS $\langle E \rangle$ appears to be rather dependent on E_n and is shown to be correlated with the emissive fission chances contributions to the observed fission cross sections. The contribution of pre-fission neutrons is least pronounced in case of 239 Pu(n,F), but most pronounced in case of ²³²Th(n,F) reaction. The PFNS of ²³⁷Np(n,F) at 7.8 MeV and 14.7 MeV are reproduced, PFNS of $^{241}Am(n,F)$ reaction are predicted

[1] V.M. Maslov et al., Phys. Rev. C 69, 034607 (2004).

[2] V.M. Maslov *et al.* Nucl. Phys. **A760**, 274 (2005).

[3] D.J. Vieira et al., Abstracts of Intern. Conf. Nucl. Data for Sci. Techn., April 22-27, 2007, Nice, France, p.31.