Collective excitations in ^{106}Cd *

<u>A. Linnemann</u>¹, C. Fransen¹, S. Ashley², A. Blazhev¹, S.N. Choudry⁴, E. Elhami⁴, J. Jolie¹,

U. Kneissl³, M.T. McEllistrem⁴, D. Mücher¹, S. Mukhopadhyay⁴, J.N. Orce⁴, H.H. Pitz³, M.

Scheck^{3,4}, C. Scholl¹, P. von Brentano¹, N. Warr¹, S.W. Yates⁴, J.R. Vanhoy⁵, S.F. Hicks⁶

¹ Institut für Kernphysik, Universität zu Köln, Germany.

² Department of Physics, University of Surrey, United Kingdom.

 3 Institut für Strahlenphysik, Universität Stuttgart, Germany.

⁴ Departments of Chemistry, Physics & Astronomy, University of Kentucky, USA.

⁵ Department of Physics, US Naval Academy, USA.

⁶ Department of Physics, University of Dallas, USA.

The Cadmium isotopes are situated in a very interesting region of the nuclear chart. The Z=50 region is very favorable for nuclear structure studies due to the large abundance of stable isotopes, so that a quasi complete study of a long chain is feasible. These nuclei have been intensively studied in the last decades and have revealed a wealth of information on multiphonon states and their interaction with intruding states, leading to shape coexistence of spherical normal and deformed 2p-2h intruder states[1]. Beside the symmetric coupling of the quadrupole excitations of the valence protons and neutrons $Q_s = N(Q_p + Q_n)$ with the structure $|2^+ > =$ $Q_s|0^+>$, a partially asymmetric coupling results in the mixed symmetry (ms) quadrupole operator $Q_{ms} = \alpha Q_p - \beta Q_n$ with the structure $|2_{ms}^+\rangle = Q_{ms}|0^+\rangle$. Furthermore, the nature of negative parity states, especially the inhomogenous phonon coupling of the octupole vibration to the quadrupole vibration leading to quadrupole-octupole coupled (QOC) states $(2^+ \otimes 3^-)^{J^{\pi}}$ with $J^{\pi} = 1^{-}, 2^{-}, 3^{-}, 4^{-}, 5^{-}$, was studied in most even-even cadmium isotopes. These different phonon excitations were investigated in ¹⁰⁶Cd using various measurements (inelastic neutron scattering (INS), nuclear resonance fluorescence(NRF)[2], $\gamma\gamma$ angular correlation). We present new data on ¹⁰⁶Cd and discuss the results related to the evolution of collective excitations in the Cadmium chain.

* This work is supported by Deutsche Forschungsgemeinschaft under Grant No. JO 391/3-2.
[1] J.L. Wood *et al.*, Phys. Rep., **215**, 101-201, (1992).

[2] A. Linnemann *et al.*, Phys. Rev. C **75**, 024310, (2007).