DSAM Lifetime Studies for Gd – Nd nuclei with EUROBALL and AFRODITE

E.O. Lieder^{1,2}, R.M. Lieder^{1,2}, A.A. Pasternak^{2,3}, B.G. Carlsson⁴, I. Ragnarsson⁴, R.A. Bark¹,

E. Gueorguieva¹, J.J. Lawrie¹, S.M. Mullins¹, P. Papka¹, W. Gast², G. Duchêne⁵

¹ iThemba Laboratory for Accelerator Based Sciences, Somerset West 7129, South Africa.

² Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich, Germany.

³ A.F. Ioffe Physical Technical Institute RAS, RU-194021 St. Petersburg, Russia.

⁴ Division of Mathematical Physics, Lund Institute of Technology, SE-221 00 Lund, Sweden.

 5 Institut de Recherches Subatomique IReS, F-67037 Strasbourg, France.

With EUROBALL IV at IReS Strasbourg a lifetime experiment using the Doppler-shift attenuation method (DSAM) has been carried out [1], which allowed to determine the B(E2)values of quadrupole bands in ^{142,143}Gd. These nuclei were produced in ¹¹⁴Sn(³²S,2pxn) reaction channels at a beam energy of 160 MeV. As target a selfsupporting metallic ¹¹⁴Sn foil of 8 mg/cm² thickness with an enrichment of 71.1% was used. To investigate lifetimes of quadrupole bands in ¹³⁴Nd a DSAM experiment was carried out with the γ -detector array AFRODITE at iThemba LABS, South Africa. This nucleus was produced in a ¹¹⁴Cd(²⁸Si, α 4n) reaction at a beam energy of 155 MeV. As target a selfsupporting metallic ¹¹⁴Cd foil of 13 mg/cm² thickness with an enrichment of 99.1% was used. Four CLOVER detectors each were mounted under 45° and 135°, respectively, in the AFRODITE array. In total, lifetimes for 15 members of quadrupole bands in ¹³⁴Nd have been obtained.

For the interpretation of the $(+, 0)_1$ band in ¹⁴²Gd [2], calculations in the cranked Nilsson-Strutinsky (CNS) model have been carried out. Triaxial shapes with well-developed potential energy minima were obtained. For angular momenta around I = 20 minima are seen for rotations around each principal axis, but at I = 30 only the minimum at $\gamma = -75^{\circ}$, corresponding to a rotation around the longest principal axis (the axis with the smallest \mathcal{J}_{rig}) remains. The $(+, 0)_1$ band has at such spins a $\pi h_{11/2}^4 \otimes \nu h_{11/2}^{-2}$ configuration. The present lifetime results support the conclusion that a rotation around the longest principal axis occurs (cf. fig. 1). This is to our knowledge the first case when experimental features support this suggestion.

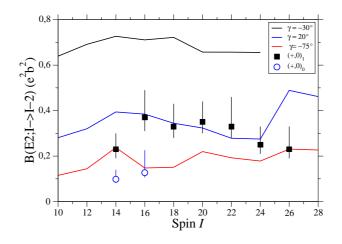


Figure 1: Comparison of experimental B(E2) values for bands in ¹⁴²Gd with results of cranked Nilsson-Strutinsky model calculations.

[1] E.O. Podsvirova *et al.*, Eur. Phys. J. A 21, 1 (2004).

[2] R.M. Lieder *et al.*, Eur. Phys. J. A 13, 297 (2002).