Nature of the $K^{\pi}=4^+$ bands in the Os isotopes*

P. E. Garrett

Department of Physics, University of Guelph, Guelph, Ontario, Canada, N1G2W1.

The $K^{\pi}=4^{+}$ bands in the even osmium isotopes have long been controversial. There were early suggestions that these bands were two-phonon γ vibrations since their energies are nearly twice that of the $K^{\pi}=2^{+}$ one-phonon states. Calculations with the *sd* IBM [1] supported this interpretation since they reproduced well the *E2* branching ratios. However, large (t, α) transfer strengths [2,3] were observed to the 4⁺ levels in ^{190,192}Os, consistent with significant two-quasiparticle components in the wave functions, that cast doubt on the two-phonon interpretation. Inelastic scattering measurements [4,5] using the (α,α') reaction strongly populated the K^{π}=4⁺ states, and large *E4* matrix elements were extracted. However, in a very detailed series of Coulomb excitation experiments [6], enhanced *E2* matrix elements were extracted for the K^{π}=4⁺ \rightarrow K^{π}=2⁺ transitions in ^{186–192}Os. The K^{π}=4⁺ bands were interpreted [7] as two-phonon γ vibrations since the intrinsic matrix elements were consistent with that expected for double-phonon excitations.

Since the (t,α) reaction mechanism is not as well understood as other single-nucleon transfer reactions using light-ions, doubts were cast on the values of the extracted spectroscopic strengths in ^{190,192}Os. In order to avoid the uncertainties in the reaction mechanism and gain further insight in the structure of the K^π=4⁺ bands, we have performed ^{185,187}Re(³He,d)^{186,188}Os experiments at the tandem accelerator facility of the TUM/LMU using beams of 30 MeV ³He ions. The deuterons were momentum analyzed with the Q3D magnetic spectrograph. Spectra were recorded at nine angles, ranging from 5 to 50 degrees, and absolute cross sections were determined. Results from these experiments will be presented, our conclusions regarding the nature of the K^π=4⁺ bands, and remaining open questions on Os nuclear structure.

* This work is supported by the Natural Sciences and Engineering Research Council.

[3] R.D. Bagnell, et al., Phys. Rev. C 20, 42 (1979).

- [5] F.T. Baker, et al., Nucl. Phys. A371, 68 (1981).
- [6] C.Y. Wu, et al., Nucl. Phys. A607, 178 (1996).
- [7] C.Y. Wu, et al., Phys. Rev. C 64, 014307 (2001).

^[1] R.F Casten and J.A. Cizewski, Nucl. Phys A309, 477 (1978)

^[2] R.D. Bagnell, et al., Phys. Lett. B66, 129 (1977).

^[4] D.G. Burke, et al., Phys. Lett. B78, 48 (1978).