High-Spin States of ^{84,85}Br: Mapping the Proton Sub-Shells towards ⁷⁸Ni

<u>A. Astier</u>¹, M.-G. Porquet¹, Ts. Venkova^{2,1}, I. Deloncle¹, F. Azaiez³, A. Buta³, D. Curien³, O. Dorvaux³, G. Duchêne³, B.J.P. Gall³, F. Khalfallah³, I. Piqueras³, M. Rousseau³, M. Meyer⁴, N. Redon⁴, O. Stézowski⁴, R. Lucas⁵, A. Bogachev⁶
¹CSNSM IN2P3-CNRS and Université Paris-Sud, 91405 Orsay, France.
²INRNE, BAS, 1784 Sofia, Bulgaria.
³IPHC, IN2P3-CNRS and Université Louis Pasteur, 67037 Strasbourg Cedex 2, France.
⁴IPNL, IN2P3-CNRS and Université Claude Bernard, 69622 Villeurbanne Cedex, France.
⁵CEA/Saclay, DSM/DAPNIA/SPhN, 91191 Gif-sur-Yvette Cedex, France.

⁶JINR, Joliot-Curie 6, 142080, Dubna, Moscow region, Russia.

The characterization of the N=50 shell gap, particularly its evolution with a verylarge neutron excess, represents currently an intense effort of the nuclear physics community. In this intermediate-mass region the shell-model calculations suffer from a fragmentary determination of some basic inputs, i.e. the single particle energies and the two-body matrix elements. For instance the prediction of the evolution of the N=50 gap at very large neutron excess needs the knowledge of the residual interaction energies for various πv configurations, issued from the *fp* protons (28<Z<38) and the *dg* neutrons (N~50), which are mainly not known at the present time. Measurements of the level structure of some moderately neutronrich nuclei provide data which can be compared with the results of state-of-the-art shellmodel calculations, leading to the determination of these crucial parameters.

Whereas the lack of suitable stable beam-target combinations prevents the use of fusion-evaporation reactions in order to populate high-spin states of these neutron-rich nuclei, fusion-fission reactions –combined to a powerful prompt γ -spectroscopy– prove to be fruitful. We have thus undertaken the high-spin state study of many isotopes (₃₇Rb, ₃₆Kr, ₃₅Br, and ₃₄Se) located around the N=50 shell closure. One can for instance refer to our previous publications concerning ⁸⁴Se₅₀ [1] and ⁸⁷Kr₅₁ [2]. Recently, the ^{84,85}Br isotopes have been thoroughly examined. These nuclei have been produced as fission fragments in the fusion reaction ¹⁸O+²⁰⁸Pb at 85 MeV bombarding energy and studied with the Euroball IV array. High-spin states of the odd-odd ⁸⁴Br₄₉ nucleus have been identified for the first time. The level scheme of ⁸⁵Br₅₀ has been extended up to 5.4 MeV excitation energy and spin *I*~21/2. From angular correlation analysis, spin values have been assigned to most of the ⁸⁵Br excited states up to 4 MeV [3].

In this talk, all our new results will presented and discussed. We will show that the excited states observed in ⁸⁵Br can be interpreted in terms of proton excitations within the $\pi f_{5/2}$ - $\pi p_{3/2}$ sub-shells, possibly added to the $\pi g_{9/2}$ sub-shell. Similarly, the excited states of the odd-odd ⁸⁴Br nucleus will be discussed in terms of both neutron and proton excitations, involving the sub-shells located close to the Fermi levels, vg_{9/2} and $\pi f_{5/2}$, $\pi p_{3/2}$, $\pi g_{9/2}$.

^[1] A. Prévost et al., Eur. Phys. J. A 22, 391 (2004)

^[2] M.-G. Porquet et al., Eur. Phys. J. A 28, 153 (2006)

^[3] A. Astier et al., Eur. Phys. J. A 30, 541 (2006)