Neutron-proton temperature-dependent pairing effects

M. Fellah^{1,2}, N.H. Allal^{1,2}, M. Belabbas³, M.R. Oudih¹ and N. Benhamouda¹

Laboratoire de Physique Théorique, USTHB,

BP32, El-Alia, 16111 Bab-Ezzouar, Alger, Algeria

²Centre de Recherche Nucléaire d'Alger, COMENA, BP399 Alger-Gare, Algeria

³Faculté des Sciences et des Sciences de l'Ingénieur, UHBB, BP151, Chlef, Algeria

Neutron-proton (np) temperature-dependent pairing gap equations have been established in the isovector case using a path integral approach. These equations generalise the BCS ones for the pairing between like-particles at finite temperature.

The various pairing gap parameters (i.e. Δ_n , Δ_p and Δ_{np}) have been studied as a function of the temperature within the one-level model using the parameters of refs [1,2], that is: a total degeneracy of pairs Ω =11, N=6 neutrons, Z=4 protons and pairing-strengths G_n = G_p =0.242. The corresponding results are given in figure 1 for G_{np} =0.75 G_p . It appears that Δ_{np} has a behaviour analogous to those of Δ_n and Δ_p in the pairing between like-particles case. In particular, there exists a critical temperature beyond which the np pairing effects vanish. Moreover the isovector pairing effects remain beyond the critical temperature that corresponds to the pairing between like-particles.

Figure 1: Variations of the pairing parameters Δ_n , Δ_p and Δ_{np} as a function of the temperature.

- [1] O. Civitarese and M. Reboiro, Phys Rev. C56, 1179 (1997)
- [2] D. Mokhtari, N.H. Allal and M. Fellah, Heav. Ion Phys. 19, 187 (2004).