Neutron induced reactions at the tandem accelerator of NCSR "Demokritos"

<u>R. Vlastou^a</u>, C.T.Papadopoulos^a, M.Kokkoris^a, G.Perdikakis^{a,b}, E.Gerodimou^a, S.Galanopoulos^a, M.Serris^a, D.Giantsoudi^a, S.Kossionides^b, S.Harissopulos^b, D.Karamanis^c, P.A. Assimakopoulos^c, E.Savvidis^d and Ch.Lamboudis^d

^aDepartment of Physics, National Technical University of Athens, 157 80 Athens, Greece, ^b Institute of Nuclear Physics, NCSR "Demokritos", 153 10 Aghia Paraskevi, Greece

^c Department of Physics, The University of Ioannina, 451 10 Ioannina, Greece ^d University of Thessaloniki, Department of Physics, Thessaloniki, Greece

The neutron facility at "Demokritos" can deliver monoenergetic neutron beams in the energy range 120-650 keV, 4-11.5 MeV and 16-20.5 MeV via the ⁷Li(p,n), d(d,n) and t(d,n) reactions, respectively. The corresponding beam energies delivered by the accelerator are 1.92-2.37 MeV protons, 0.8-9.6 MeV deuterons and 0.8-3.7 MeV deuterons, for the three reactions, respectively. Neutron beam flux measurements for the low energy region have been performed utilizing a new NE213 liquid scintillator detector, while for the medium energy region, the beam flux has been investigated by means of the multi-foil method of ⁹³Nb(n,2n)^{92m}Nb, ¹¹⁵In(n,n')^{115m}In, ⁵⁶Fe(n,p)⁵⁶Mn, ¹⁹⁷Au(n,2n)¹⁹⁶Au and ²⁷Al(n, α)²⁴Na reference reactions.

Two areas of investigation of neutron induced reactions will be presented.

a) Cross section measurements for reactions relevant to nuclear energy applications, such as 232 Th(n,2n) 231 Th and 241 Am(n,2n) 240 Am. On the context of the CERN n-TOF collaboration, the cross sections of these reactions have been measured at several energies, relative to the 93 Nb(n,2n) 92m Nb, 197 Au(n,2n) 196 Au and 27 Al(n, α) 24 Na reaction cross sections, by using the activation method. In addition, (n,f) reactions on 232 Th relative to natural U have been carried out utilizing track etch detectors (lexan). Theoretical statistical model calculations have been performed using the computer code STAPRE/F and compared to the experimental data of (n,2n) and (n,f) reactions.

b) In addition, cross section measurements for (n,2n), (n,p) and (n,α) reactions on high purity natural Ge and Hf have been performed in the energy range 7-11.7 MeV, by using the activation method. In the cases where it was found possible, isomeric to ground state cross section ratios have been determined, which have attracted considerable interest due to the fact that calculations on the isomeric states are strongly dependent on the level scheme and the spin distribution of the level density of the product nucleus. Theoretical statistical model calculations are currently being carried out by using the code STAPRE and EMPIRE.