Evidence for non-termination of rotational bands in ⁷⁴Kr

J.J. Valiente-Dobón^{1,2}, T. Steinhardt³, C.E. Svensson¹, I. Ragnarsson⁴, A.V. Afanasjev⁵, C. Andreoiu¹, M.P. Carpenter⁶, G. de Angelis², F. Dönau⁷, J. Eberth³, S.J. Freeman⁶, A. Gadea², P.E. Garrett¹, D. Jenkins⁸, F. Johnston-Theasby⁸, P. Joshi⁸, A. Jungclaus³, F. Moore⁶, G. Mukherjee⁶, D.R. Napoli², C. Plettner⁷, W. Reviol⁹, D.G. Sarantites⁹, R. Schwengner⁷, D. Seweryniak⁶, I. Stefanescu³, O. Thelen³, R. Wadsworth⁸, ¹ Department of Physics, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
² Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Legnaro, Italy.
³ Institut für Kernphysik, Universität zu Köln, Zülpicher Strasse 77, D-50937 Köln, Germany.
⁴ Lund Institute of Technology, P.O. Box 118 S-221 00 Lund, Sweden.
⁵ Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556.
⁶ Physics Division, Argonne National Laboratory, Argonne, Illinois 60439.
⁷ Institut für Kern- und Hadronenphysik, FZ Rossendorf, D-01314 Dresden, Germany.

⁹ Department of Chemistry, Washington University, St. Louis MO 63130.

The atomic nucleus reveals a number of features of a finite many-fermion quantum mechanical system which either do not exist or cannot be experimentally measured in other systems. One of these unique features is smooth band termination, namely a continuous transition within the same configuration from collective rotation at low spin to a non-collective single-particle (terminating) state at maximum spin I_{max} [1]. Such terminating bands have been studied in detail during the last decade [1]. However for a long time it has been predicted that not all the bands terminate in a non-collective state, i.e. some bands show strong collectivity even at $I = I_{max}$ [1]. Recently we have observed experimentally the first strong indication in ⁷⁴Kr that this process takes place in nuclei [2].

High-spin states in ⁷⁴Kr were studied via the ⁴⁰Ca(⁴⁰Ca, $\alpha 2p$)⁷⁴Kr fusion-evaporation reaction using two different setups. The experiments were performed at Legnaro and Argonne using ⁴⁰Ca beams delivered by the XTU Tandem accelerator and the ATLAS accelerator, respectively. In the first setup EUROBALL and ISIS were used for γ -ray detection and charged-particle channel selection, while GAMMASPHERE and MICROBALL were used in the second setup.

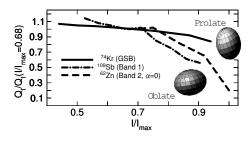


Figure 1: Transition quadrupole moments of the bands in 62 Zn, 74 Kr and 109 Sb, normalized at $I/I_{max} = 0.68$, as a function of I/I_{max} .

In order to study the shape evolution of rotational bands up to I_{max} , we have measured the lifetimes (or, equivalently, the transition quadrupole moments, Q_t) using the thin-target Dopplershift attenuation method (DSAM). Figure 1 illustrates how the classical examples of smooth band termination, 62 Zn and 109 Sb, show pronounced drops of Q_t close to band termination, in contrast to 74 Kr. The stability of Q_t in 74 Kr indicates the persistance of collectivity up to I_{max} . This result is supported by theoretical calculations. It represents the first strong evidence for "non-termination" of rotational bands at I_{max} .

[1] A.V. Afanasjev et al., Phys. Rep. **322**, 1 (1999).

[2] J.J. Valiente-Dobón et al., Phys. Rev. Lett. (to be submitted).