Fusion hindrance and quasi-fission in heavy-ion induced reactions: disentangling the effect of different parameters M. Trotta¹, A.M. Stefanini², B.R. Behera², L. Corradi², E. Fioretto², A. Gadea², A. Latina², I.V. Pokrovsky^{2,4}, S. Szilner², S. Beghini³, G. Montagnoli³, F. Scarlassara³, A.Yu. Chizhov⁴, I.M. Itkis⁴, M.G. Itkis⁴, G.N. Kniajeva⁴, N.A. Kondratiev⁴, E.M. Kozulin⁴, R.N. Sagaidak⁴, V.M. Voskressensky⁴, S. Courtin⁵, F. Haas⁵, N. Rowley⁵, P.R.S. Gomes⁶, A. Szanto de Toledo⁷ INFN-Sezione di Napoli, I-80126 Napoli, Italy INFN-Laboratori Nazionali di Legnaro, I-35020 Legnaro (Padova), Italy Dip. Fisica and INFN-Sezione di Padova, I-35131 Padova, Italy FLNR-JINR, 141980 Dubna, Russia IReS IN2P3-CNR/ULP, F-67037 Strasbourg Cedex 2, France Inst. de Fisica, UFF, Niteroi, R.J. 24210-340 Brazil Dep. de Fisica, USP, C.P. 66318, 5315-970 Sao Paulo, Brazil The dynamics of heavy-ion fusion at energies around the Coulomb barrier is an open problem in the field of low energy nuclear physics. In particular, when the compound nucleus is heavy the quasi-fission reaction channel becomes increasingly important and may lead to a large hindrance for fusion, therefore affecting the probability of producing superheavy elements. Therefore, it is important to understand which are the main parameters playing a role in the onset of quasi-fission reactions. In this framework, fusion-evaporation and fusion-fission cross sections have been measured in a large energy range for different entrance channels leading to the same ^{192,202}Pb*, ²¹⁰Rn* and ²¹⁶Ra* compound nuclei. Light (¹²C, ¹⁶O) and relatively heavier (³⁴S, ^{40,48}Ca) projectiles were chosen to bombard both spherical and deformed targets (^{144,154}Sm, ¹⁶⁸Er, ¹⁷⁶Yb, ¹⁹⁴Pt). The comparison of reduced evaporation data for the same compound nuclei put in evidence a fusion hindrance effect in reactions induced by heavier projectiles with respect to light beams. Such fusion hindrance is consistent with a noticeable contribution coming from quasi-fission events observed in the mass-energy distribution of fission fragments. The anisostropy in angular distrtibutions of fission fragments confirmed the pre-equilibrium character of the mechanism involved. The role of mass asymmetry, nuclear deformation and shell effects on the onset of the quasifission mechanism will be discussed.