Experimental Study of the $E_{cm} \simeq 183$ keV Resonances in 17 O $(p,\alpha)^{14}$ N and 17 O $(p,\gamma)^{18}$ F for Classical Nova Nucleosynthesis - A. Chafa¹, <u>V. Tatischeff</u>², P. Aguer³, S. Barhoumi⁴, A. Coc², F. Garrido², M. Hernanz⁵, J. José⁶, J. Kiener², A. Lefebvre-Schuhl², S. Ouichaoui¹, N. de Séréville^{2,7} and J.-P. Thibaud² ¹ USTHB-Faculté de Physique, BP 32, El-Alia, 16111 Bab Ezzouar, Algiers, Algeria - ² CSNSM, IN2P3-CNRS and Université Paris-Sud, F-91405 Orsay Cedex, France ³ CENBG, IN2P3-CNRS and Université de Bordeaux I, F-33175 Gradignan, France ⁴ UMBM, B.P. 166, Route ICHBILLIA, 28000 M'sila, Algeria - ⁵ Institut de Ciències de l'Espai (CSIC), and Institut d'Estudis Espacials de Catalunya, E-08034 Barcelona, Spain - ⁶ Departament de Física i Enginyeria Nuclear (UPC) and Institut d'Estudis Espacials de Catalunya, E-08034 Barcelona, Spain - ⁷ Centre de Recherches du Cyclotron, UCL, B-1348 Louvain-la-Neuve, Belgium Classical nova explosions are thought to be a major source of the oxygen rarest isotope, ¹⁷O and to synthesize the radioisotope ¹⁸F ($T_{1/2}$ =110 min), whose β^+ -decay produces a γ -ray emission that could be detected with the INTEGRAL observatory or with future γ -ray satellites. However, both the ¹⁷O and ¹⁸F productions strongly depend on the ¹⁷O(p,α) ¹⁴N and ¹⁷O(p,γ) ¹⁸F thermonuclear reaction rates, whose precise knowledge is thus required in the range of temperatures attained during nova outbursts ((1–4)×10⁸ K). The $^{17}\mathrm{O}+p$ reaction rates are dominated in this temperature range by a narrow resonance at $E_{cm}{\simeq}183$ keV. We first performed a new experimental study of the corresponding state in the $^{18}\mathrm{F}$ compound nucleus via the $^{14}\mathrm{N}(\alpha,\gamma)^{18}\mathrm{F}$ reaction. We used the Doppler-shift attenuation method to specify both its excitation energy ($E_x{=}5789.8{\pm}0.3$ keV) and width ($\Gamma{>}250$ meV). We then measured in a second experiment the strengths of the resonances at $E_{cm}{\simeq}183$ keV in both the $^{17}\mathrm{O}(p,\gamma)^{18}\mathrm{F}$ and $^{17}\mathrm{O}(p,\alpha)^{14}\mathrm{N}$ reactions. For the latter reaction, the resonance ($\omega\gamma_{p\alpha}{=}1.6{\pm}0.2$ meV) was never observed before our measurements. The branching ratio was determined to be $\Gamma_{\alpha}/\Gamma_{\gamma}{=}470{\pm}50$, from measurements by an activation method of the $^{18}\mathrm{F}$ total production in irradiated $^{17}\mathrm{O}$ targets. These new resonance properties have important consequences for $^{17}\mathrm{O}$ nucleosynthesis and γ -ray astronomy of classical novae.