Coexistence of Cluster Structure and Mean-field-type Structure in Medium-weight Nuclei

Yasutaka TANIGUCHI¹, Masaaki KIMURA², Hisashi HORIUCHI¹ ¹ Department of Physics, Kyoto University, Japan. ² Yukawa Institute for Theoretical Physics, Kyoto University, Japan.

We have studied the coexistence of cluster structure and mean-field-type structure in ²⁰Ne and ⁴⁰Ca using Antisymmetrized Molecular Dynamics (AMD) with a new type of constraint. We found that $K^{\pi} = 0_3^+$ band of ²⁰Ne,^[1] and $K^{\pi} = 0_2^+$ and 0_3^+ bands of ⁴⁰Ca have non-small amount of ⁸Be-¹²C, α -³⁶Ar and ¹²C-²⁸Si cluster structures, respectively.

Our interest in the coexistence of cluster structure and mean-field-type structure is especially in medium and heavy-weight nucleus. In ⁴⁰Ca, it was suggested that $K^{\pi} = 0_2^+$ band has α -³⁶Ar cluster structure theoretically,^[2] and the suggestion was supported by the experiment of ³⁶Ar(⁶Li, d)⁴⁰Ca reaction.^[3] Furthermore, it was suggested that super deformation band of ⁴⁰Ca has ¹²C-²⁸Si cluster structure theoretically^[4] and experimentally.^[5]

For studying coexistence of cluster structure and mean-field-type structure, we proposed a new constraint, d-constraint, for AMD.^[1] The constraint is for the distance between the centers of masses of groups of nucleons corresponded to clusters. The cluster structure of a group of nucleons is determined so as to give the minimum energy of the total system by the energy variation with the constraint. Since the constraint is only for the distance between the centers of masses of clusters, the resultant wave functions of clusters are not necessarily those of ground states but are optimized due to the interaction between clusters. This point is the advantage of our method compared to traditional cluster models like Brink model.

By energy variation with *d*-constraint and quadrupole deformation constraint, we calculated wave functions of α -¹⁶O cluster structure, ⁸Be-¹²C cluster structure and mean-field-type structure for ²⁰Ne, and α -³⁶Ar cluster structure, ⁸Be-³²S cluster structure, α -³²S- α linear chain structure, ¹²C-²⁸Si cluster structure and mean-field-type structure for ⁴⁰Ca. Superposing these wave functions with various types of structures, we performed GCM calculation. We found that ⁸Be-¹²C cluster structure was an important component of $K^{\pi} = 0_3^+$ band of ²⁰Ne, and α -³⁶Ar cluster structure and ¹²C-²⁸Si cluster structure were those of $K^{\pi} = 0_2^+$ and 0_3^+ bands of ⁴⁰Ca, respectively.

[1] Y. Taniguchi, M. Kimura, H. Horiuchi, Prog. Theor. Phys. 112 (2004), 475.

[2] F. Michel, S. Ohkubo and G. Reidemeister, Prog. Theor. Phys. Suppl. No. 132 (1998), Chap. 2, and references therein.

[3] T. Yamaya, K. Katori, M. Fujiwara, S. Kato and S. Ohkubo, Prog. Theor. Phys. Suppl. No. 132 (1998), Chap. 3, and references therein.

[4] Y. Kanada-En'yo. Prog. Theor. Phys. Suppl. No. 146 (2002), 190.

[5] M. Rousseau et al., Phys. Rev. C 66 (2002), 034612.