Determination of Nuclear Level Densities and γ -Strength Functions of $^{205-208}$ Pb Nuclei.

N.U.H. Syed¹, M. Guttormsen¹, S. Siem¹, F. Ingebretsen¹, T. Lönnroth², J. Rekstad¹,

A. Schiller³, A.C. Sunde¹, R. Chankova¹, and S.W. Ødegård¹

¹ Department of Physics, University of Oslo, P.O.Box 1048 Blindern, N-0316 Oslo, Norway.
² Department of Physics, Åbo Akademi University, FIN-20500 Åbo, Finland.

³ Lawrence Livermore National Laboratory, L-414, 7000 East Avenue, Livermore, California 94551, USA.

The importance of finding nuclear level densities is of fundamental importance in nuclear structure and in nuclear reaction theory. The γ -strength function is another important parameter for understading the nuclear structure. So, emphasis of the present talk will be on the energy dependent nuclear level densities, ρ , and γ -strength functions of $^{205-208}$ Pb nuclei below the nuclear binding energies.

The Oslo Cyclotron Group has developed an experimental method [1] that extracts nuclear level densities and radiative strength functions simultneously from primary γ -rays in light-ion reactions. The experimental primary γ -ray spectra per excitation energy bin, $P(E_i, E_{\gamma})$, have been extracted for the (³He, α) and (³He, ³He⁴) reactions. The Axel-Brink hypothesis [2,3] has been employed to separate out level density and γ -strength function from the primary γ spectra by

$$P(E_i, E_\gamma) \propto \mathcal{T}(E_\gamma)\rho(E_i - E_\gamma),$$

where \mathcal{T} is the γ -ray transmission coefficient.

The nuclear thermodynamical properties are extracted from the experimental nuclear level density within the microcanonical and canonical ensemble. The Boltzmann's postulate for *entropy* can be employed, stated under as

$$S(E, N) = k_B \ln \Omega(E, N),$$

where Ω is the number of microstates derived from experimentally found level densities, and k_B is the Boltzmann's constant. The radiative strength function (RSF) at low γ -ray energies will also be discussed with respect to temperature dependency.

- [1] A. Shiller, Phys. Res. A447, 498 (2000).
- [2] D.M. Brink, Ph.D. thesis, Oxford University, 1955.
- [3] P. Axel, Phys. Rev. **126**, 671 (1962).