Probing the shapes of ¹⁸⁶Pb *

J. Pakarinen¹, I.G. Darby², S. Eeckhaudt¹, T. Enqvist¹, T. Grahn¹, P.T. Greenlees¹,

V. Hellemans³, K. Heyde³, F. Johnston-Theasby⁴, P. Jones¹, R. Julin¹, S. Juutinen¹,

H. Kettunen¹, M. Leino¹, A.-P. Leppänen¹, P. Nieminen⁵, M. Nyman¹, R.D. Page²,

P.M. Raddon⁴, <u>P. Rahkila¹</u>, C. Scholey¹, J. Uusitalo¹, R. Wadsworth⁴

¹ Department of Physics, University of Jyväskylä, P.O.Box 35,

FI-40014 University of Jyväskylä, Finland.

² Department of Physics, Oliver Lodge Laboratory, University of Liverpool,

Liverpool L69 7ZE, United Kingdom.

³ Department of Subatomic and Radiation Physics, Proeftuinstraat 86, B-9000 Gent, Belgium.

⁴ Department of Physics, University of York, Heslington, York Y01 5DD, United Kingdom.

⁵ Department of Nuclear Physics, The Australian National University, Canberra, ACT 0200,

Australia.

The discovery of three co-existing shapes of the ¹⁸⁶Pb nucleus at very low excitation energies has been one of the recent highlights in studies of exotic nuclei [1]. The ground state of ¹⁸⁶Pb is obviously spherical and has a spin-parity of 0⁺. Surprisingly, two first excited states of ¹⁸⁶Pb at 532 keV and 650 keV, identified in α -decay studies, have also been found to be 0⁺ states and have been associated with oblate and prolate deformations, respectively. The existence of the low-lying prolate potential energy minimum was confirmed already earlier by the observation of an yrast prolate rotational band in in-beam experiments [2]. A rotational band associated with the oblate 0⁺ state should also exist and, if discovered, would confirm the case of unique triple shape co-existence.

Detailed coincidence γ -ray studies of ¹⁸⁶Pb have been rather difficult as the production crosssection is only of the order of 100 μ b in fusion evaporation reactions. Recoil-Decay-Tagging (RDT) method has not been easily applicable since the half-life of ¹⁸⁶Pb is 4.8s. The highly granular GREAT focal-plane spectrometer at the RITU gas-filled separator operated in conjunction with the JUROGAM γ -ray array was used at JYFL to perform a RDT γ -ray experiment for ¹⁸⁶Pb using the ¹⁰⁶Pd(⁸³Kr,3n)¹⁸⁶Pb reaction. High statistics $\gamma\gamma$ -coincidence data tagged with the α -decay of ¹⁸⁶Pb were collected, enabling the identification of the yrast prolate band and new non-yrast bands. Results have been compared with IBM calculations. Properties of the bands and their relations to nuclear shapes will be discussed.

* The work has been supported by the EU-FP6-IHP-Access-to-JYFL Project (Contract No. HPRI-CT-1999-00044), the EU-FP6-IHP-RTD-EXOTAG Project (Contract No. HPRI-CT-1999-00044) and by the Academy of Finland under the Finnish Centre of Excellence Programme 2000-2005 (Project No. 44875) and by the EPSRC (UK). Financial support from the FWO-Vlaanderen , the University of Ghent as well as from the OSTC (Grant IUAP #P5/07) is also acknowledged (V.H. and K.H.). We also thank the UK/France (EPSRC/IN2P3) Loan Pool and Euroball Owners Committee for the Eurogam detectors of JUROGAM.

[1] A. N. Andreyev *et al.*, Nature **405**, 430 (2000).

[2] J. Heese *et al.*, Physics Letters **B 302**, 390 (1993).