¹⁷Ne break-up in light targets including proton removal from the ¹⁵O core.

Yu.L. Parfenova^{1,2}, L.V. Grigorenko³, M.V. Zhukov⁴

¹ Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia.

² Physique Nucléaire Théorique et Physique Mathématique, Universite Libre de Bruxelles,

Brussels, Belgium.

³ Flerov Laboratory of Nuclear Reactions, JINR, RU-141980 Dubna, Russia.

⁴ Department of Physics, Chalmers University of Technology and Göteborg University, S-41296 Göteborg, Sweden

The reactions of the ¹⁷Ne fragmentation in light (C,Be) target nuclei at energies from 20 to 700 MeV/nucleon are studied in the three-body ($^{15}O+p+p$) model. The interaction cross sections, the break-up cross sections, in particular, one- and two-proton removal cross sections, and the fragment momentum distributions are calculated in the eikonal approximation of the Glauber model with the three-body wave function of ¹⁷Ne. In calculations, the contribution of the proton removal from the ¹⁵O core fragment is taken into account. The results of the calculations are compared with available experimental data.

It is found, that the momentum distribution of the fragments in the one- and two-proton removal of the valence protons in 17 Ne is mainly determined by the s/d configuration mixing.

At the same time, it is found that the removal of the valence protons in 17 Ne constitutes only 60%-70% of the total proton removal cross section. The rest is possibly connected with the proton removal from the 15 O core.

Therefore, consideration of inclusive data on the core longitudinal momentum distribution is insufficient to draw conclusions about the halo property of 17 Ne as this characteristic possibly has large contribution from processes on the core. The question about configuration mixing in 17 Ne can be resolved by invariant mass measurement of 15 O and spectator proton after the proton knockout.