Study of hyperfine structure in ^{9,11}Be isotopes

Yu.L. Parfenova^{1,2}, Ch. Leclercq-Willain¹

The study of the hyperfine anomaly of neutron rich nuclei, in particular, neutron halo nuclei, can give a very specific and unique way to measure their neutron distribution and confirm a halo structure. The hyperfine structure anomaly in $\mathrm{Be^+}$ ions is calculated with a realistic electronic wave function, obtained as a solution of the Dirac equation. In calculations, the Coulomb potential modified by the charge distribution of the clustered nucleus and three electrons in the configuration $1\mathrm{s}^22\mathrm{s}$ is used.

The nuclear wave function for the ¹¹Be nucleus is obtained in the core+nucleon model, and that for the ⁹Be nucleus is calculated in the three-cluster $(\alpha+\alpha+n)$ model. The aim of this study is to test whether the hyperfine structure anomaly reflects an extended spatial structure of ¹¹Be. The results of the calculations are listed in Table 1. ϵ_{BW} is the hyperfine anomaly in the Bohr-Weisskopf effect and δ is the charge structure correction [1], μ is the calculated magnetic moment, and μ_{exp} is the experimental value of the magnetic moment.

Isotope	$\epsilon_{BW},\%$	$\delta,\%$	μ	μ_{exp}
$^{-11}$ Be	-0.0534	-0.0476	$-1.784 \mu_0$	$-1.6816(8) \mu_0 [2]$
⁹ Be (WF1)	-0.0228	-0.0419	$-1.053 \ \mu_0$	$-1.177432(3) \mu_0 [3]$
9 Be (WF2)	-0.0303	-0.0463	$-1.316 \ \mu_0$	$-1.177432(3) \mu_0$

The results for $^9\mathrm{Be}$ are obtained with two different three-body wave functions (WF1 and WF2) showing the sensitivity of the calculations to input parameters. The value of the ϵ_{BW} is sensitive to the weights of states admixed in the nuclear ground state wave function. The total hyperfine anomaly value $\epsilon = \epsilon_{BW} + \delta$ in $^{11}\mathrm{Be}$ differs from that in $^9\mathrm{Be}$ by 25%. This gives a measure of the accuracy of the hyperfine anomaly measurements needed for studies of the neutron distribution in the Be isotopes.

¹ Physique Nucléaire Théorique et Physique Mathématique, Universite Libre de Bruxelles, Brussels, Belgium.

² Skobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia.

^{*} This work is supported by the Belgian Program P5-07 of Inter-university Attraction Poles initiated by the Belgian-state Federal Services for Scientific Politics with Central and Oriental European countries.

^[1] H.J. Rosenberg and H.H. Stroke. Phys. Rev. A 5, 1992 (1972).

^[2] W. Geithner et al. Phys. Rev. Lett. 83, 3792 (1999).

^[3] E. W. Weber and J. Vetter. Phys. Lett. A **56**, 446 (1976).