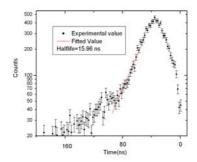
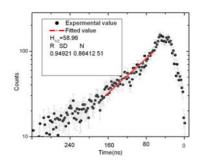
The lifetime measurement of MR Band head (27/2 → 25/2 +, E1 432 keV transition) in Pb-197 using Pulsed Beam Method


Suresh Kumar¹, Priyanka Agarwal¹, Anwesha Ghosh¹, Monika², Rishi Kumar Sinha³, Anukul Dhal³, S.Murlithar⁴, R.P.Singh⁴, Rakesh Kumar⁴, R.K.Bhowmik⁴, S.C.Pancholi ^{4,5}, L.Chaturvedi³, Pervesh K Joshi³, A.K.Jain¹ and H. Hubel⁶


¹Department of Physics, I.I.T.Roorkee, Roorkee-247667, ²Department of Physics, G.N.D.U, Amritsar-143005, ³Department of Physics, B.H.U, Varanasi-221005, ⁴Nuclear Science Centre, New Delhi-110067, ⁵Department of Physics, Delhi University, Delhi-110007, ⁶Helmholtz-Institut für Strahlen- und Kernphysik, Universität Bonn, Germany

More than a decade ago, H. Hubel in Germany and R.M. Clark in U.K., observed regular pattern of γ -rays in the spectra of ¹⁹⁸Pb and ¹⁹⁹Pb nuclei, which are nearly spherical in nature. Such bands are termed as Magnetic Rotational (MR) Bands or Magnetic Dipole Bands and subsequently also as Shears Bands [1]. A large transverse magnetic dipole moment is generated, when high-j protons are coupled to high-j neutrons holes or vice versa. The particle-hole coupling gives the lowest energy for a perpendicular coupling of the particle and hole angular momenta [2].

First evidence on perpendicular coupling was reported by a measurement of the g-factor of the 2584-keV band head of the M1 band in 193 Pb [3]. The same experiment also confirmed that the band has $[\pi(h_{9/2}i_{13/2})_{11}^{-} \otimes \nu i_{13/2}^{-1}]_{29/2}^{-}$ structure. In the 197 Pb nuclei, similar type of band structure exits at 3283-keV. In order to confirm the perpendicular coupling and assign exact configuration for this band structure in 197 Pb nuclei, an experiment has been planned to investigate the lifetime and the g-factor of lowest band head state (isomeric state with E1 transition of 432 keV) of Magnetic Rotation band in 197 Pb using Pulsed beam method. In the first stage, we have carried out the lifetime measurements of this band head.

The ¹⁹⁷ Pb nucleus was populated using the reaction ¹⁸⁶ W (¹⁶O, 5n) ¹⁹⁷Pb at 97 MeV. The ¹⁶O pulsed beam with pulse width 1.2 ns and period 250 ns was delivered by 15-UD Pelletron accelerator at Nuclear Science Centre, New Delhi. Self-supporting enriched ¹⁸⁶W target of thickness 1.5 mg/cm² was used. The time calibration is done online by r. f. signal, which gives time calibration of 0.1ns per channel. In order to measure the lifetime; we have made the E_{γ} -t (4K × 1K) using all detectors by Millier Package. The depopulation of 27/2 isomer at 3283-keV of the interest by the 432.5 keV and the half-life measured by 432.5 keV transition is 15.96 ns (Fig .1). The half-life of 33/2 isomer is measured by the depopulation of the isomer by 606.5 keV. The lifetime of this isomer is 58.96 ns (Fig.2). This half-life is consistent with pervious known half-life 55±5 ns [4].

The authors are deeply thankful to Dr. Amit Roy, Director , NSC Delhi, for providing the facilities at 15 UD Pelletron. Financial support from M.H.R.D and D.S.T. (Govt. of India) are gratefully acknowledged.

References

- [1] Amita et al., At. Data and Nucl. Data Tables 74, 283 (2000)
- [2] G. Baldsiefen et al., Nucl. Phys. **A574**, 521 (1994)
- [3] S. Chamel et al., Phys. Rev. Lett. **79**, 2002 (1997)
- [4] M. Pautrat et al., Nucl. Phys. A443, 172 (1994)