## High-precision mass measurement of <sup>17</sup>Ne

 <u>A. Herlert</u><sup>1,2</sup>, S. Baruah<sup>1</sup>, K. Blaum<sup>3,4</sup>, P. Delahaye<sup>2</sup> S. George<sup>3</sup> C. Guénaut<sup>5</sup>, F. Herfurth<sup>4</sup>, H.-J. Kluge<sup>4</sup>, D. Lunney<sup>5</sup>, S. Schwarz<sup>6</sup>, L. Schweikhard<sup>1</sup>, C. Weber<sup>3</sup>, C. Yazidjian<sup>2</sup>
<sup>1</sup> Institute of Physics, Ernst-Moritz-Arndt-University, 17487 Greifswald, Germany.
<sup>2</sup> CERN, Physics Department, 1211 Geneva 23, Switzerland.
<sup>3</sup> Institute of Physics, Johannes Gutenberg-University, 55099 Mainz, Germany.

<sup>4</sup> GSI, Planckstr. 1, 64291 Darmstadt, Germany.

- <sup>5</sup> CSNSM-IN2P3-CNRS, 91405 Orsay-Campus, France.
- <sup>6</sup> NSCL, Michigan State University, East Lansing, MI 48824-1321, USA.

Accurate mass measurements of short-lived nuclides can contribute to tests of nuclearstructure models. With the Penning-trap mass spectrometer ISOLTRAP at ISOLDE/CERN (see Fig. 1) nuclear masses can be determined with an uncertainty in the order of  $\delta m/m =$  $1 \times 10^{-8}$ . To this end, radionuclides from the continuous ISOLDE beam are cooled and bunched in a radiofrequency quadrupole trap. After removal of isobaric contaminants in a first Penning trap, the cyclotron frequency  $\nu_c = qB/(2\pi m)$  is probed by use of a second Penning trap and a time-of-flight detection technique [1], where B is the magnetic field and q/m the chargeover-mass ratio of the ions. The comparison of  $\nu_c$  to the cyclotron frequency of a stable and well-known reference ion yields the requested mass value.

Recently, the mass of <sup>17</sup>Ne has been determined, which is the so far lightest short-lived nuclide measured at ISOLTRAP. A typical cyclotron resonance curve is shown in the inset of Fig. 1. <sup>17</sup>Ne is a possible two-proton halo [2] and thus, it is important to measure the proton separation energy. Furthermore, the mass of <sup>17</sup>Ne is required for the calculation of the mass shift in the isotope-shift analysis in collinear laser spectroscopy experiments with the aim to determine the charge radius of the nucleus. This will be a further approach to probe the halo properties of <sup>17</sup>Ne. In addition, the mass value can be applied for a test of the isobaric multiplet mass equation for the isospin quartet A = 17 and T = 3/2.

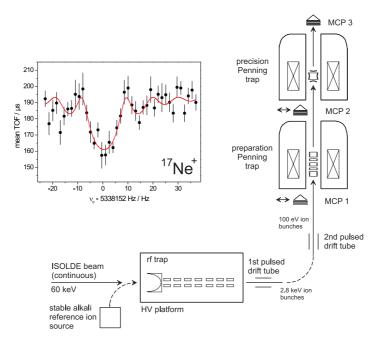



Figure 1: Schematic experimental setup and cyclotron resonance of  $^{17}Ne^+$ .

- [1] G. Gräff, H. Kalinowsky, J. Traut, Z. Phys. A 297, 35 (1980).
- [2] M.V. Zhukov, I.J. Thompson, Phys. Rev. C 52, 3505 (1995).