First identification of γ -rays in ¹⁰⁶Te using the recoil tagging technique

B. Hadinia^{a1}, B. Cederwall^a, K. Andgren^a, J. Blomqvist^a, I. Darby^{b,d}, S. Eeckhaudt^d,
E. Ganioğlu^{a,g}, P. Greenlees^d, E. Ideguchi^e, P.M. Jones^d, D.T. Joss^f, R. Julin^d, S. Ketelhut^d,
M. Leino^d, E.S. Paul^b, M. Petri^b, P. Rahkila^d, M. Sandzelius^{a,d}, C. Scholey^d, J. Uusitalo^d,
R. Wadsworth^c, R. Wyss^a
^a Department of Physics, Royal Institute of Technology, Stockholm, Sweden
^b Oliver Lodge Laboratory, University of Liverpool, Liverpool UK
^c Department of Physics, Univ. of York, York, UK
^d Department of Physics, University of Jyväskylä, Finland

^e CNS, University of Jyvaskyla, Jyvaskyla, Finland ^e CNS, Univ. of Tokyo, Wako, Japan

^f CCLRC Daresbury Laboratory, Daresbury, Warrington, UK

^g Science Faculty, Physics Department, Istanbul University, Istanbul, Turkey

Gamma-ray transitions in the extremely neutron-deficient nucleus ¹⁰⁶Te have been identified for the first time. The experiment, which utilised the ⁵⁴Fe(⁵⁴Fe,2n)¹⁰⁶Te* reaction, was performed at the K130 Cyclotron Accelerator Laboratory of the University of Jyväskylä, Finland. Prompt γ rays produced at the target position were detected by the JUROGAM γ -ray spectrometer and those belonging to ¹⁰⁶Te were selected based on the recoil identification provided by the RITU gas-filled recoil separator and the GREAT focal plane spectrometer using the recoil decay tagging technique. The production cross section was estimated at 25 nb, a new limit for in-beam γ -ray spectroscopy. A ground state band, tentatively extending up to $I^{\pi} = 8^+$, is proposed suggesting enhanced vibrational collectivity as $N \to Z$. The systematics of low-lying yrast states in the Te isotopes is discussed within the context of vibrational excitations and residual nucleon-nucleon (in particular T = 0 np) interactions.

¹Email address: hadinia@nuclear.kth.se