Advances Towards and Beyond the Proton Dripline with Recoil-Isomer Tagging.

D.M. Cullen¹, S. Rigby¹, D.T. Scholes¹ C. Scholey², S. Eeckhaudt², T. Grahn², P. Greenlees², P.M. Jones², R. Julin², S. Juutinen², H. Kettunen², M. Leino², A. Leppänen², P. Nieminen², M. Nyman², J. Pakarinen², P. Rahkila², J. Uusitalo².

¹School of Physics & Astronomy, University of Manchester, Manchester, M13 9PL, UK. ²Department of Physics, University of Jyväskylä, PO Box 35, Jyväskylä, Finland.

This talk will review the past, present and future status of the recoil-isomer tagging research programme which has been used to access isomeric states at and *beyond* the mass ≈ 140 proton dripline. The recoil-isomer tagging technique was first used at the University of Jyäskylä in 1998 to establish the prompt rotational band on a $K^{\pi} = 8^{-}$ isomeric state in ¹³⁸Gd [1]. Since that time a series of experiments have been performed which have studied isomeric states in the N = 77 isotones ${}^{140}_{63}\text{Eu}_{77}$ [2], ${}^{142}_{65}\text{Tb}_{77}$ and ${}^{144}_{67}\text{Ho}_{77}$ [3], and in the N = 74 K-isomer chain, ${}^{138}_{64}\text{Gd}_{74}$ [1] and ${}^{140}_{66}\text{Dy}_{74}$ [4]. These experiments have revealed valuable *first* information about deformations, single-particle excitation energies and hindrance factors in nuclei at and beyond the proton dripline where little or no information previously existed.

The results of the most-recent experiment will be shown where new isomeric states have been established in ${}^{143}_{66}$ Dy₇₇ [5], ${}^{136}_{61}$ Pm₇₅, and ${}^{139}_{64}$ Gd₇₅ and a further two isomers which are currently unplaced. Finally, the talk will conclude with a discussion of the future prospects for this research which includes increases in the efficiency of the recoil-isomer tagging technique with a new gas detector which was designed and built at the University of Manchester.

- [1] D.M.Cullen et al., Phys. Rev. C58 (1998) 846.
- [2] D.M.Cullen *et al.*, Phys. Rev. C66 (2002) 034308.
- [3] C. Scholey et al., Phys. Rev. C63 (2001) 034321.
- [4] D.M.Cullen *et al.*, Phys. Lett. **B529** (2002) 42.
- [5] S. Rigby et al., J. Phys. G. (NUSTAR05 Conference proceedings) in press.