Direct mass measurements of exotic nuclei at GANIL *

M. Chartier¹, M.B. Gomez Hornillos¹, W. Mittig², B. Jurado², H. Savajols², G.F. Lima³, A. Lépine-Szily³, G. Audi⁴, J.-C. Angélique⁵, D. Baiborodin⁶, B. Blank⁷, L. Caballero Ontanaya⁸, J.-M. Casandjian², W. Catford⁹, F. Chautard², A. Cunsolo¹⁰, C.E. Demonchy^{1,2}, Z. Dlouhy⁶, C. Donzaud¹¹, A. Foti¹⁰, G. Georgiev², A. Gillibert¹², L. Giot², B. Jacquot², J. Jaromir⁶, A. Khouaja², N. Lecesne², M. Lewitowicz², R. Lichtenthaler³, S. Lukyanov¹³, M. Mac Cormick¹¹, D. J. Morrissey¹⁴, N. Orr⁵, A. N. Ostrowski², Y. Penionzhkevich¹³, S. Pita², G. Politi¹⁰, M. Rousseau², P. Roussel-Chomaz², B.M. Sherrill¹⁴, C. Stephan¹¹, T. Suomijärvi¹¹, L. Tassan-Got¹¹, D. J. Vieira¹⁵, A. C. C. Villari², J. M. Wouters¹⁵ ¹University of Liverpool, Department of Physics, Liverpool, L69 7ZE, UK. ²GANIL, Boulevard Henri Becquerel, BP 55027, 14076 Caen Cedex 5, France. ³Instituto de Fisica, Universidade de São Paulo, C.P.66318, 05315-970 São Paulo, Brazil. ⁴CSNSM (IN2P3-CNRS & UPS), Bâtiment 108, 91405 Orsay Campus, France. ⁵LPC, IN2P3-CNRS, ISMRA-Université de Caen, 14050 Caen Cedex, France. ⁶Nucl. Phys. Inst. ASCR, 25068 Rez, Czech Republic. ⁷CENBG, Le Haut Vigneau, 33175 Gradignan, France. ⁸IFC, CSIC-Universidade de Valencia, 46071 Valencia, Spain. ⁹University of Surrey, Department of Physics, Guildford, Surrey, GU2 7XH,UK. ¹⁰INFN-Universita di Catania, Corso Itália 57, 95129 Catania, Italy. ¹¹IPN Orsay, BP1, 91406 Orsay Cedex, France. ¹²CEA/DSM/DAPNIA/SPhN, CEN Saclay, 91191 Gif-sur-Yvette, France. ¹³LNR, JINR Dubna, P.O. Box 79, 101000 Moscow, Russia. ¹⁴NSCL, Michigan State University, East Lansing, MI 48824-1321, USA. ¹⁵LANL, Los Alamos, NM 87545, USA.

Atomic masses provide an important test of the reliability of nuclear models, as they reveal information about nuclear structure, such as deformations or shell-closures. They also play a role in nuclear astrophysics for the understanding of the abundances of nuclides and of the paths of the stellar nucleosynthesis processes, such as the r-process on the neutron-rich side of the nuclear chart, or the rp-process on the neutron-deficient side, which proceeds along the N=Z line. Two direct mass-measurement methods for very exotic nuclei have been developed at GANIL, which are based on the measurement of the time-of-flight of heavy ions, either with the SPEG magnetic spectrometer [1,2] or with the CSS2 cyclotron [3,4]. The SPEG technique is well suited to relatively light exotic nuclei produced via the fragmentation of heavy-ion beams. The massmeasurement programme with SPEG focuses on the investigation of the quenching of shell-gaps and the appearance of new magic numbers around N = 16, 20, 28, 34 and 40. The CSS2 method is an original technique, which uses the second GANIL cyclotron as a high-resolution spectrometer. The exotic nuclei are produced by fusion-evaporation from a primary beam delivered by the first GANIL cyclotron, CSS1, impinging on a target located between the two cyclotrons. The mass-measurement programme with CSS2 focuses on the masses of nuclei close to the N=Z line with A \approx 70-100. A new direct mass-measurement method was recently commissioned [5], using the CIME cyclotron as a high-resolution spectrometer, which offers the possibility to accelerate a wider range of exotic and reference masses than the CSS2 cyclotron. The basis of this new technique is the sweeping of the radio frequency of the cyclotron. A review of recent results obtained with these three techniques will be presented.

* This work is supported in part by EPSRC.

- [1] G.F. Lima et al., Phys. Rev. C 65, 044618 (2002).
- [2] H. Savajols et al., ENAM04 conference proceedings, to appear in EPJ A.
- [3] M. Chartier et al., Hyp. Int. 132, 275 (2001).
- [4] M. Chartier et al., NUSTAR05 conference proceedings, to appear in Jour. Phys. G.
- [5] M.B. Gomez Hornillos et al., NUSTAR05 conference proceedings, to appear in Jour. Phys. G.