Spectroscopy of neutron-deficient nuclei around ³⁶Ca

A. Bürger^{1,4}, F. Azaiez², M. Stanoiu², Zs. Dombrádi³, A. Algora³, A. Al-Khatib¹, B. Bastin⁵, G. Benzoni⁶, R. Borcea⁷, C. Bourgeois², P. Bringel¹, E. Clément⁴, J.-C. Dalouzy⁸, Z. Dlouhý⁹, A. Drouart⁴, C. Engelhardt¹, S. Franchoo², Zs. Fülöp³, A. Görgen⁴, S. Grévy⁵, H. Hübel¹, F. Ibrahim², W. Korten⁴, J. Mrázek⁹, A. Navin⁸, C. Timis¹⁰, F. Rotaru⁷, P. Roussel-Chomaz⁸, M.-G. Saint-Laurent⁸, G. Sletten¹¹, D. Sohler³, O. Sorlin⁵, Ch. Theisen⁴, D. Verney² and S. Williams¹⁰ ¹Helmholtz-Institut für Strahlen- und Kernphysik, Univ. Bonn, Germany ²Institut de Physique Nucléaire, IN2P3-CNRS, Orsay, France ³Institute of Nuclear Research, Debrecen, Hungary ⁴DAPNIA/SPhN, CEA Saclay, France ⁵Laboratoire de Physique Corpusculaire, Caen, France ⁶INFN Milano, Italy ⁷IFIN-HH, Bucharest-Magurele, Romania ⁸GANIL, Caen, France ⁹Nuclear Physics Institute, Řež, Czech Republic ¹⁰Department of Physics, University of Surrey, UK ¹¹Niels Bohr Institute, University of Copenhagen, Denmark

An experiment was performed to extend the knowledge of excited states in neutron-deficient Ca isotopes, and to search for the position of the proton drip-line at Z = 20. In particular, excited states in ³⁶Ca were searched for to obtain information on the isospin-dependence of the nucleon-nucleon-interaction near the drip-line from a comparison with its stable mirror nucleus, ³⁶S. In the experiment, from a primary ⁴⁰Ca beam with an energy of $95 \cdot A$ MeV secondary beams of ³⁷Ca and ³⁶Ca were produced by fragmentation on the SISSI target at GANIL. In a secondary Be target, a variety of nuclei around ^{36,35}Ca has been produced by n- and p-removal at beam energies around $61 \cdot A$ MeV. The produced nuclei were identified using the spectrometer *SPEG*, and energies of prompt γ rays were measured with the *Château de Cristal*, an array of 74 BaF₂ scintillators. Besides measuring γ -ray energies, the experimental setup allows to determine spectroscopic factors and to measure momentum distributions. The energy of the first 2⁺ state of ³⁶Ca has been determined, and previously unknown transitions in other nuclei have been observed. First results of the very recent experiment will be presented.